RSS-Feed abonnieren

DOI: 10.1055/a-2649-1560
Integrated Patient Digital and Biomimetic Twins for Precision Medicine: A Perspective
Funding We would like to acknowledge the following grants from the National Institutes of Health: 5UG3TR003289-02 (D.L. Taylor, J. Behari, A. Soto-Gutierrez), S10OD12269 (D.L. Taylor), 5RO1DK135606-02 (M. Miedel and A. Soto-Gutierrez), 4UH3TR004124-04 (M. Miedel), Pittsburgh Liver Research Center- (P30DK120531-06 (Monga), 1U2CTR004863-01 (D.L. Taylor, M.E. Schurdak, M. Miedel, A. Soto-Gutierrez, L. Vernetti), U24TR002632 (D.L. Taylor, M.E. Schurdak, A. Gough), 5R01CA255809 (J. Behari). We would also like to acknowledge research support from the following companies: Simulations Plus with an SBIR for predicting liver injury from biologics in our human liver MPS.

Abstract
A new paradigm for drug development and patient therapeutic strategies is required, especially for complex, heterogeneous diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Heterogeneity in MASLD patients is driven by genetics, various comorbidities, gut microbiota composition, lifestyle, environment, and demographics that produce multiple patient disease presentations and outcomes. Existing drug development methods have had limited success for complex, heterogeneous diseases like MASLD where only a fraction of patients respond to specific treatments, prediction of a therapeutic response is not presently possible, and the cost of the new classes of drugs is high. However, it is now possible to generate patient digital twins (PDTs) that are computational models of patients using clinomics and other “omics” data collected from patients to make various predictions, including responses to therapeutics. PDTs are then integrated with patient biomimetic twins (PBTs) that are patient-derived organoids or induced pluripotent stem cells that are then differentiated into the optimal number of organ-specific cells to produce organ experimental models. The PBTs mimic key aspects of the patient's pathophysiology, enabling predictions to be tested. In conclusion, integration of PTDs and PBTs has the potential to create a powerful precision medicine platform, yet there are challenges.
Keywords
patient digital twins - patient biomimetic twins - precision medicine - organoids - induced pluripotent stem cells - microphysiological systems - pathophysiology of complex diseases - biomarker discovery* Co-Senior Authors.
Publikationsverlauf
Accepted Manuscript online:
04. Juli 2025
Artikel online veröffentlicht:
23. Juli 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Ahmed SM, Shivnaraine RV, Wu JC. FDA modernization act 2.0 paves the way to computational biology and clinical trials in a dish. Circulation 2023; 148 (04) 309-311
- 2 Han JJ. FDA modernization Act 2.0 allows for alternatives to animal testing. Artif Organs 2023; 47 (03) 449-450
- 3 Zushin PH, Mukherjee S, Wu JC. FDA modernization act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J Clin Invest 2023; 133 (21) e175824
- 4 Johnston KG, Grieco SF, Nie Q, Theis FJ, Xu X. Small data methods in omics: the power of one. Nat Methods 2024; 21 (09) 1597-1602
- 5 Katsoulakis E, Wang Q, Wu H. et al. Digital twins for health: a scoping review. NPJ Digit Med 2024; 7 (01) 77
- 6 Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating challenges and opportunities in multi-omics integration for personalized healthcare. Biomedicines 2024; 12 (07) 1496
- 7 Shen MD, Chen SB, Ding XD. The effectiveness of digital twins in promoting precision health across the entire population: a systematic review. NPJ Digit Med 2024; 7 (01) 145
- 8 Ayoob JC, Boyce RD, Livshits S. et al. Getting to YES: the evolution of the University of Pittsburgh Medical Center Hillman Cancer Center Youth Enjoy Science (YES) Academy. J STEM Outreach 2022; 5 (02)
- 9 Sandmann S, de Graaf AO, Tobiasson M. et al. Multicenter next-generation sequencing studies between theory and practice: harmonization of data analysis using real-world myelodysplastic syndrome data. J Mol Diagn 2021; 23 (03) 347-357
- 10 Sel K, Hawkins-Daarud A, Chaudhuri A. et al. Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine. NPJ Digit Med 2025; 8 (01) 40
- 11 Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18 (04) 252-268
- 12 Adams LA, Waters OR, Knuiman MW, Elliott RR, Olynyk JK. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am J Gastroenterol 2009; 104 (04) 861-867
- 13 Byrne CD, Targher G. NAFLD as a driver of chronic kidney disease. J Hepatol 2020; 72 (04) 785-801
- 14 Duell PB, Welty FK, Miller M. et al; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Hypertension; Council on the Kidney in Cardiovascular Disease; Council on Lifestyle and Cardiometabolic Health; and Council on Peripheral Vascular Disease. Nonalcoholic fatty liver disease and cardiovascular risk: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol 2022; 42 (06) e168-e185
- 15 Lv Y, Zhang J, Yang T. et al. Non-alcoholic fatty liver disease (NAFLD) is an independent risk factor for developing new-onset diabetes after acute pancreatitis: a multicenter retrospective cohort study in Chinese population. Front Endocrinol (Lausanne) 2022; 13: 903731
- 16 Mantovani A, Zaza G, Byrne CD. et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: a systematic review and meta-analysis. Metabolism 2018; 79: 64-76
- 17 Oni ET, Agatston AS, Blaha MJ. et al. A systematic review: burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; should we care?. Atherosclerosis 2013; 230 (02) 258-267
- 18 Stepanova M, Younossi ZM. Independent association between nonalcoholic fatty liver disease and cardiovascular disease in the US population. Clin Gastroenterol Hepatol 2012; 10 (06) 646-650
- 19 Chang Y, Jung HS, Yun KE, Cho J, Cho YK, Ryu S. Cohort study of non-alcoholic fatty liver disease, NAFLD fibrosis score, and the risk of incident diabetes in a Korean population. Am J Gastroenterol 2013; 108 (12) 1861-1868
- 20 Mantovani A, Csermely A, Petracca G. et al. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: an updated systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2021; 6 (11) 903-913
- 21 Musso G, Gambino R, Tabibian JH. et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med 2014; 11 (07) e1001680
- 22 Chan WK, Chuah KH, Rajaram RB, Lim LL, Ratnasingam J, Vethakkan SR. Metabolic dysfunction-associated steatotic liver disease (MASLD): a state-of-the-art review. J Obes Metab Syndr 2023; 32 (03) 197-213
- 23 Ndumele CE, Rangaswami J, Chow SL. et al; American Heart Association. Cardiovascular-kidney-metabolic health: a presidential advisory from the American Heart Association. Circulation 2023; 148 (20) 1606-1635
- 24 Ndumele CE, Neeland IJ, Tuttle KR. et al; American Heart Association. A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: a scientific statement from the American Heart Association. Circulation 2023; 148 (20) 1636-1664
- 25 Bedo D, Beaudrey T, Florens N. Unraveling chronic cardiovascular and kidney disorder through the butterfly effect. Diagnostics (Basel) 2024; 14 (05) 463
- 26 Younossi Z, Anstee QM, Marietti M. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15 (01) 11-20
- 27
Younossi ZM.
Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol
2019; 70 (03) 531-544
MissingFormLabel
- 28 Younossi ZM, Golabi P, Price JK. et al. The global epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among patients with type 2 diabetes. Clin Gastroenterol Hepatol 2024; 22 (10) 1999-2010.e8
- 29 Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat Rev Gastroenterol Hepatol 2021; 18 (09) 599-612
- 30 Chen YQ. NASH drug development: seeing the light at the end of the tunnel?. J Clin Transl Hepatol 2023; 11 (06) 1397-1403
- 31 Fraile JM, Palliyil S, Barelle C, Porter AJ, Kovaleva M. Non-alcoholic steatohepatitis (NASH) - a review of a crowded clinical landscape, driven by a complex disease. Drug Des Devel Ther 2021; 15: 3997-4009
- 32 Du H, Huang J, Wang Y. et al. Analyzing MASLD interventional clinical trial registration based on the ClinicalTrials.gov database. BMC Gastroenterol 2025; 25 (01) 148
- 33 Keam SJ. Resmetirom: first approval. Drugs 2024; 84 (06) 729-735
- 34 Harrison SA, Bedossa P, Guy CD. et al; MAESTRO-NASH Investigators. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med 2024; 390 (06) 497-509
- 35 Javanbakht M, Fishman J, Moloney E, Rydqvist P, Ansaripour A. Early cost-effectiveness and price threshold analyses of resmetirom: an investigational treatment for management of nonalcoholic steatohepatitis. PharmacoEconom Open 2023; 7 (01) 93-110
- 36
Newsome PN,
Buchholtz K,
Cusi K.
et al;
NN9931-4296 Investigators.
A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis.
N Engl J Med 2021; 384 (12) 1113-1124
MissingFormLabel
- 37 Noureddin M, Charlton MR, Harrison SA. et al. Expert panel recommendations: practical clinical applications for initiating and monitoring resmetirom in patients with MASH/NASH and moderate to noncirrhotic advanced fibrosis. Clin Gastroenterol Hepatol 2024; 22 (12) 2367-2377
- 38 Sorger PK, Allerheiligen SRB, Abernethy DR. et al. Quantitative and Systems Pharmacology in the Post-genomic Era: New Approaches to Discovering Drugs and Understanding Therapeutic Mechanisms; 2011
- 39 Stern AM, Schurdak ME, Bahar I, Berg JM, Taylor DL. A perspective on implementing a quantitative systems pharmacology platform for drug discovery and the advancement of personalized medicine. J Biomol Screen 2016; 21 (06) 521-534
- 40 Pei F, Li H, Henderson MJ. et al. Connecting neuronal cell protective pathways and drug combinations in a Huntington's disease model through the application of quantitative systems pharmacology. Sci Rep 2017; 7 (01) 17803
- 41 Taylor DL, Gough A, Schurdak ME. et al. Harnessing human microphysiology systems as key experimental models for quantitative systems pharmacology. Handb Exp Pharmacol 2019; 260: 327-367
- 42 Lefever DE, Miedel MT, Pei F. et al. A quantitative systems pharmacology platform reveals NAFLD pathophysiological states and targeting strategies. Metabolites 2022; 12 (06) 528
- 43 Foundational Research Gaps and Future Directions for Digital Twins. The National Academies Collection: Reports funded by National Institutes of Health; 2024
- 44 Drummond D, Gonsard A. Definitions and characteristics of patient digital twins being developed for clinical use: scoping review. J Med Internet Res 2024; 26: e58504
- 45 Corral-Acero J, Margara F, Marciniak M. et al. The 'digital twin' to enable the vision of precision cardiology. Eur Heart J 2020; 41 (48) 4556-4564
- 46 De Domenico M, Allegri L, Caldarelli G. et al. Challenges and opportunities for digital twins in precision medicine from a complex systems perspective. NPJ Digit Med 2025; 8 (01) 37
- 47 McTeer M, Applegate D, Mesenbrink P. et al; LITMUS Consortium investigators. Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information. PLoS One 2024; 19 (02) e0299487
- 48 Shin H, Shim S, Oh S. Machine learning-based predictive model for prevention of metabolic syndrome. PLoS One 2023; 18 (06) e0286635
- 49 Yu C-S, Lin Y-J, Lin C-H. et al. Predicting metabolic syndrome with machine learning models using a decision tree algorithm: retrospective cohort study. JMIR Med Inform 2020; 8 (03) e17110
- 50 Greenacre M, Groenen PJ, Hastie T, d'Enza AI, Markos A, Tuzhilina E. Principal component analysis. Nat Rev Methods Primers 2022; 2 (01) 100
- 51 Strobl EV. Consistent differential effects of buproprion and mirtazapine in major depression. medRxiv 2024; 2024. 12.27.24319612
- 52 Strobl EV, Kim S. Learning outcomes that maximally differentiate psychiatric treatments. medRxiv 2024; 2024.12 . 03.24318424
- 53 Strobl EV. Consistent differential effects of bupropion and mirtazapine in major depression. J Affect Disord 2025; 388: 119551
- 54 Ewart L, Apostolou A, Briggs SA. et al. Performance assessment and economic analysis of a human liver-chip for predictive toxicology. Commun Med (Lond) 2022; 2 (01) 154
- 55 Ko J, Song J, Choi N, Kim HN. Patient-derived microphysiological systems for precision medicine. Adv Healthc Mater 2024; 13 (07) e2303161
- 56 Mansouri M, Lam J, Sung KE. Progress in developing microphysiological systems for biological product assessment. Lab Chip 2024; 24 (05) 1293-1306
- 57 Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32 (08) 760-772
- 58 Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 2015; 14 (04) 248-260
- 59 Low LA, Tagle DA. Tissue chips - innovative tools for drug development and disease modeling. Lab Chip 2017; 17 (18) 3026-3036
- 60 Sin A, Chin KC, Jamil MF, Kostov Y, Rao G, Shuler ML. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog 2004; 20 (01) 338-345
- 61 May S, Evans S, Parry L. Organoids, organs-on-chips and other systems, and microbiota. Emerg Top Life Sci 2017; 1 (04) 385-400
- 62 Aleman J, K. R, Wiegand C. et al. A metabolic dysfunction-associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. Commun Biol 2024; 7 (01) 1317
- 63 Lee-Montiel FT, George SM, Gough AH. et al. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med (Maywood) 2017; 242 (16) 1617-1632
- 64 Li X, George SM, Vernetti L, Gough AH, Taylor DL. A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 2018; 18 (17) 2614-2631
- 65 Miedel MT, Gavlock DC, Jia S, Gough A, Taylor DL, Stern AM. Modeling the effect of the metastatic microenvironment on phenotypes conferred by estrogen receptor mutations using a human liver microphysiological system. Sci Rep 2019; 9 (01) 8341
- 66 Saydmohammed M, Jha A, Mahajan V. et al. Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Exp Biol Med (Maywood) 2021; 246 (22) 2420-2441
- 67 Vernetti LA, Senutovitch N, Boltz R. et al. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med (Maywood) 2016; 241 (01) 101-114
- 68 Vernetti LA, Vogt A, Gough A, Taylor DL. Evolution of experimental models of the liver to predict human drug hepatotoxicity and efficacy. Clin Liver Dis 2017; 21 (01) 197-214
- 69 Sakolish C, Reese CE, Luo YS. et al. Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS). Toxicology 2021; 448: 152651
- 70 Dong XC. PNPLA3-A potential therapeutic target for personalized treatment of chronic liver disease. Front Med (Lausanne) 2019; 6: 304
- 71 Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol 2018; 68 (02) 268-279
- 72 Gou Y, Wang L, Zhao J. et al. PNPLA3-I148M variant promotes the progression of liver fibrosis by inducing mitochondrial dysfunction. Int J Mol Sci 2023; 24 (11) 9681
- 73 Xia M, Varmazyad M, Pla-Palacín I. et al. Comparison of wild-type and high-risk PNPLA3 variants in a human biomimetic liver microphysiology system for metabolic dysfunction-associated steatotic liver disease precision therapy. Front Cell Dev Biol 2024; 12: 1423936
- 74 Dongiovanni P, Donati B, Fares R. et al. PNPLA3 I148M polymorphism and progressive liver disease. World J Gastroenterol 2013; 19 (41) 6969-6978
- 75 Romeo S, Kozlitina J, Xing C. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
- 76 Valenti L, Al-Serri A, Daly AK. et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51 (04) 1209-1217
- 77 Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011; 53 (06) 1883-1894
- 78 Sookoian S, Castaño GO, Burgueño AL, Gianotti TF, Rosselli MS, Pirola CJ. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res 2009; 50 (10) 2111-2116
- 79 Liu YL, Patman GL, Leathart JB. et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 2014; 61 (01) 75-81
- 80 Harrison SA, Bashir MR, Guy CD. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2019; 394 (10213): 2012-2024
- 81 Harrison SA, Taub R, Neff GW. et al. Resmetirom for nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled phase 3 trial. Nat Med 2023; 29 (11) 2919-2928
- 82 Vernetti L, Gough A, Baetz N. et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci Rep 2017; 7: 42296
- 83 Arnouk J, Rachakonda VP, Jaiyeola D, Behari J. Differential outcomes and clinical challenges of NAFLD with extreme obesity. Hepatol Commun 2020; 4 (10) 1419-1429
- 84 Behari J, Graham L, Wang R. et al. Dynamics of hepatic steatosis resolution and changes in gut microbiome with weight loss in nonalcoholic fatty liver disease. Obes Sci Pract 2021; 7 (02) 217-225
- 85 Behari J, Wang R, Luu HN, McKenzie D, Molinari M, Yuan JM. Severe obesity is associated with worse outcomes than lean metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2024; 8 (07) e0471
- 86 Dudekula A, Rachakonda V, Shaik B, Behari J. Weight loss in nonalcoholic Fatty liver disease patients in an ambulatory care setting is largely unsuccessful but correlates with frequency of clinic visits. PLoS One 2014; 9 (11) e111808
- 87 Furlan A, Tublin ME, Yu L, Chopra KB, Lippello A, Behari J. Comparison of 2D shear wave elastography, transient elastography, and MR elastography for the diagnosis of fibrosis in patients with nonalcoholic fatty liver disease. AJR Am J Roentgenol 2020; 214 (01) W20-W26
- 88 Kumar G, Basri S, Imam AA, Khowaja SA, Capretz LF, Balogun AO. Data harmonization for heterogeneous datasets: a systematic literature review. Appl Sci (Basel) 2021; 11 (17) 8275
- 89 Hays RD, Spritzer KL, Schalet BD, Cella D. PROMIS-29 v2.0 profile physical and mental health summary scores. Qual Life Res 2018; 27 (07) 1885-1891
- 90 Subar AF, Kirkpatrick SI, Mittl B. et al. The automated self-administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians, and educators from the National Cancer Institute. J Acad Nutr Diet 2012; 112 (08) 1134-1137
- 91 Harris PA, Taylor R, Minor BL. et al; REDCap Consortium. The REDCap consortium: building an international community of software platform partners. J Biomed Inform 2019; 95: 103208
- 92 Spasic I, Nenadic G. Clinical text data in machine learning: systematic review. JMIR Med Inform 2020; 8 (03) e17984
- 93 Annaratone L, De Palma G, Bonizzi G. et al; Alleanza Contro il Cancro (ACC) Pathology and Biobanking Working Group. Basic principles of biobanking: from biological samples to precision medicine for patients. Virchows Arch 2021; 479 (02) 233-246
- 94 Coppola L, Cianflone A, Grimaldi AM. et al. Biobanking in health care: evolution and future directions. J Transl Med 2019; 17 (01) 172
- 95 Amps K, Andrews PW, Anyfantis G. et al; International Stem Cell Initiative. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 2011; 29 (12) 1132-1144
- 96 Sullivan S, Stacey GN, Akazawa C. et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen Med 2018; 13 (07) 859-866
- 97 Novoa JJ, Westra IM, Steeneveld E. et al. Good manufacturing practice-compliant human induced pluripotent stem cells: from bench to putative clinical products. Cytotherapy 2024; 26 (06) 556-566
- 98 Hunt CJ. Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother 2011; 38 (02) 107-123
- 99 Coll M, Perea L, Boon R. et al. Generation of hepatic stellate cells from human pluripotent stem cells enables in vitro modeling of liver fibrosis. Cell Stem Cell 2018; 23 (01) 101-113.e7
- 100 Collin de l'Hortet A, Takeishi K, Guzman-Lepe J. et al. Generation of human fatty livers using custom-engineered induced pluripotent stem cells with modifiable SIRT1 metabolism. Cell Metab 2019; 30 (02) 385-401.e9
- 101 Florentino RM, Morita K, Haep N. et al. Biofabrication of synthetic human liver tissue with advanced programmable functions. iScience 2022; 25 (12) 105503
- 102 Jang KJ, Otieno MA, Ronxhi J. et al. Reproducing human and cross-species drug toxicities using a liver-chip. Sci Transl Med 2019; 11 (517) eaax5516
- 103 Takata K, Kozaki T, Lee CZW. et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident macrophage differentiation and function. Immunity 2017; 47 (01) 183-198.e6
- 104 Gough A, Vernetti L, Bergenthal L, Shun TY, Taylor DL. The microphysiology systems database for analyzing and modeling compound interactions with human and animal organ models. Appl In Vitro Toxicol 2016; 2 (02) 103-117
- 105 Schurdak M, Vernetti L, Bergenthal L. et al. Applications of the microphysiology systems database for experimental ADME-Tox and disease models. Lab Chip 2020; 20 (08) 1472-1492
- 106 Gough A, Stern AM, Maier J. et al. Biologically relevant heterogeneity: metrics and practical insights. SLAS Discov 2017; 22 (03) 213-237
- 107 Gagnier JJ, Moher D, Boon H, Beyene J, Bombardier C. Investigating clinical heterogeneity in systematic reviews: a methodologic review of guidance in the literature. BMC Med Res Methodol 2012; 12: 111
- 108 Giraudeau B, Caille A, Eldridge SM, Weijer C, Zwarenstein M, Taljaard M. Heterogeneity in pragmatic randomised trials: sources and management. BMC Med 2022; 20 (01) 372
- 109 Miedel MT, Varmazyad M, Xia M. et al. Validation of microphysiological systems for interpreting patient heterogeneity requires robust reproducibility analytics and experimental metadata. Cell Rep Methods 2025; 5 (04) 101028
- 110 Raverdy V, Tavaglione F, Chatelain E. et al. Data-driven cluster analysis identifies distinct types of metabolic dysfunction-associated steatotic liver disease. Nat Med 2024; 30 (12) 3624-3633
- 111 Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still outperform deep learning on typical tabular data?. Adv Neural Inf Process Syst 2022; 35: 507-520
- 112 Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all you need. Inf Fusion 2022; 81: 84-90
- 113 Chen T, Guestrin C. Xgboost: a scalable tree boosting system. 2016: 785-794
- 114 Breiman L. Random forests. Mach Learn 2001; 45: 5-32
- 115 Lundberg S. A unified approach to interpreting model predictions. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017
- 116 Janzing D, Minorics L, Blöbaum P. Feature relevance quantification in explainable AI: a causal problem. PMLR; 2020: 2907-2916
- 117 Armandi A, Bugianesi E. Dietary and pharmacological treatment in patients with metabolic-dysfunction associated steatotic liver disease. Eur J Intern Med 2024; 122: 20-27
- 118 VanderWeele TJ. Outcome-wide epidemiology. Epidemiology 2017; 28 (03) 399-402
- 119 Qi L, Groeger M, Sharma A. et al. Adipocyte inflammation is the primary driver of hepatic insulin resistance in a human iPSC-based microphysiological system. Nat Commun 2024; 15 (01) 7991
- 120 Giordano L, Mihaila SM, Eslami Amirabadi H, Masereeuw R. Microphysiological systems to recapitulate the gut-kidney axis. Trends Biotechnol 2021; 39 (08) 811-823
- 121 Pesarin F, Salmaso L. Permutation Tests for Complex Data: Theory, Applications and Software. John Wiley & Sons; 2010
- 122 Storey JD. A direct approach to false discovery rates. J R Stat Soc Series B Stat Methodol 2002; 64 (03) 479-498
- 123 Popa EO, van Hilten M, Oosterkamp E, Bogaardt MJ. The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sci Soc Policy 2021; 17 (01) 6
- 124 Huang PH, Kim KH, Schermer M. Ethical issues of digital twins for personalized health care service: preliminary mapping study. J Med Internet Res 2022; 24 (01) e33081