Subscribe to RSS

DOI: 10.1055/a-2649-6142
Increase in Angiogenesis and Vascularization in Patient-Derived Endometriosis Tissue: Insights from a 3D In Vivo Model
Zunahme der Angiogenese und Vaskularisation in humanem Endometriosegewebe: Erkenntnisse aus einem 3D-in-vivo-ModellSupported by: Bayerisches Wissenschaftsforum

Abstract
Aim
Endometriosis is a gynecological disorder characterized by endometrial-like tissue outside the uterus. This study evaluates the vascularization and proliferation of human endometriosis and endometrium tissues engrafted onto the chorioallantoic membrane of chicken embryos using immunohistochemistry and laser speckle contrast analysis imaging. For the assessment of clinical relevance, a comparison between laboratory and clinical data was performed.
Material and Methods
Tissue samples from 10 patients categorized by #Enzian scores and undergoing endometriosis surgery were investigated in the chorioallantoic membrane model. Hematoxylin-eosin staining and immunohistochemical markers, including CD10, cytokeratin, Ki67, and Caspase-3, assessed cellular structures, proliferation, and apoptosis. Changes in blood perfusion, implemented as a surrogate marker for angiogenesis and vascularization, were analyzed over three days using laser speckle contrast analysis. The fertilized chicken eggs used for the chorioallantoic membrane model were stratified for their gender utilizing an in ovo sexing technique.
Results
Immunohistochemistry confirmed stromal and glandular cells in transplanted tissues. Ki67 indicated variable proliferation, while Caspase-3 identified apoptosis. Perfusion increased significantly in 75% of endometriosis samples. Endometrium from a patient with endometriosis showed increased perfusion, contrasting with stable perfusion in healthy endometrium. Higher #Enzian scores partly correlated with increased vascularization.
Summary
The chorioallantoic membrane model is a viable platform for studying endometriosis vascularization and angiogenesis. Endometriosis tissue showed enhanced vascularization influenced by lesion size and anatomical location, offering insights into disease progression and therapeutic strategies.
Zusammenfassung
Zielsetzung
Endometriose ist eine gynäkologische Erkrankung, die durch endometriumähnliches Gewebe außerhalb der Gebärmutter gekennzeichnet ist. Diese Studie untersucht die Vaskularisation und Proliferation von humanem Endometriose- und Endometriumgewebe, das auf die Chorioallantoismembran (CAM) von Hühnereiern transplantiert wurde, mittels Immunhistochemie und Laser-Speckle-Kontrastanalyse (LASCA). Zur Bewertung der klinischen Relevanz wurde ein Vergleich zwischen experimentellen und klinischen Daten durchgeführt.
Material und Methoden
Gewebeproben von 10 Patientinnen, klassifiziert nach #Enzian-Score und operiert aufgrund von Endometriose, wurden im CAM-Modell untersucht. Zelluläre Strukturen, Proliferation und Apoptose wurden mittels Hämatoxylin-Eosin-Färbung und immunhistochemischer Marker (CD10, Zytokeratin, Ki-67 und Caspase-3) beurteilt. Veränderungen der Durchblutung – als Surrogatmarker für Angiogenese und Vaskularisation – wurden über 3 Tage hinweg mittels LASCA analysiert. Die befruchteten Hühnereier im CAM-Modell wurden mithilfe eines In-ovo-Geschlechtsbestimmungstests hinsichtlich ihres Geschlechts stratifiziert.
Ergebnisse
Die Immunhistochemie bestätigte Stromazellen und Drüsenzellen in den transplantierten Geweben. Ki-67 zeigte eine variable Proliferation, während Caspase-3 Apoptose nachwies. In 75% der Endometrioseproben nahm die Durchblutung signifikant zu. Endometrium einer Patientin mit Endometriose zeigte eine erhöhte Perfusion im Gegensatz zu stabiler Durchblutung in gesundem Endometrium. Höhere #Enzian-Scores korrelierten teilweise mit erhöhter Vaskularisation (p < 0,001).
Schlussfolgerung
Das CAM-Modell stellt eine geeignete Plattform zur Untersuchung der Vaskularisation und Angiogenese bei Endometriose dar. Endometriosegewebe zeigte eine verstärkte Gefäßneubildung, die von der Größe und anatomischen Lokalisation der Läsionen beeinflusst wurde, und liefert somit wertvolle Erkenntnisse über den Krankheitsverlauf und potenzielle Therapieansätze.
Keywords
CAM model - endometriosis - chorioallantoic membrane - 3D in vivo model - human endometriosis tissue - human tissueSchlüsselwörter
CAM-Modell - Endometriose - Chorioallantoismembran - 3D-in-vivo-Modell - humanes Endometriosegewebe - humanes GewebePublication History
Received: 19 January 2025
Accepted after revision: 02 July 2025
Article published online:
22 July 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Zondervan KT, Becker CM, Koga K. et al. Endometriosis. Nat Rev Dis Primers 2018; 4: 9
- 2 D’Hooghe TM. Invisible microscopic endometriosis: how wrong is the sampson hypothesis of retrograde menstruation to explain the pathogenesis of endometriosis?. Gynecol Obstet Invest 2003; 55: 61-62
- 3 Zondervan KT, Becker CM, Missmer SA. Endometriosis. N Engl J Med 2020; 382: 1244-1256
- 4 Thomas EJ, Campbell IG. Molecular genetic defects in endometriosis. Gynecol Obstet Invest 2000; 50 (Suppl. 1) 44-50
- 5 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674
- 6 Chantalat E, Valera M-C, Vaysse C. et al. Estrogen Receptors and Endometriosis. Int J Mol Sci 2020; 21: 2815
- 7 Rocha ALL, Reis FM, Taylor RN. Angiogenesis and endometriosis. Obstet Gynecol Int 2013; 2013: 859619
- 8 May K, Becker CM. Endometriosis and angiogenesis. Minerva Ginecol 2008; 60: 245-254
- 9 Taylor RN, Lebovic DI, Mueller MD. Angiogenic factors in endometriosis. Ann N Y Acad Sci 2002; 955: 89-100 discussion 118, 396–406
- 10 Taylor RN, Lundeen SG, Giudice LC. Emerging role of genomics in endometriosis research. Fertil Steril 2002; 78: 694-698
- 11 Dirou C, Fondin M, Le Pabic E. et al. Association of preoperative Enzian score with postoperative fertility in patients with deep pelvic endometriosis. J Gynecol Obstet Hum Reprod 2022; 51: 102408
- 12 Tuttlies F, Keckstein J, Ulrich U. et al. ENZIAN-score, a classification of deep infiltrating endometriosis. Zentralbl Gynakol 2005; 127: 275-281
- 13 Ribatti D, Tamma R, Annese T. Chorioallantoic membrane vascularization. A meta-analysis. Exp Cell Res 2021; 405: 112716
- 14 Schneider-Stock R, Ribatti D. The CAM Assay as an Alternative In Vivo Model for Drug Testing. Handb Exp Pharmacol 2021; 265: 303-323
- 15 Kue CS, Tan KY, Lam ML. et al. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp Anim 2015; 64: 129-138
- 16 Phumat P, Chaichit S, Potprommanee S. et al. Influence of Benincasa hispida Peel Extracts on Antioxidant and Anti-Aging Activities, including Molecular Docking Simulation. Foods 2023; 12: 3555
- 17 Rao Q, Yu H, Li R. et al. Dihydroartemisinin inhibits angiogenesis in breast cancer via regulating VEGF and MMP-2/-9. Fundam Clin Pharmacol 2024; 38: 113-125
- 18 Thomas EJ, Campbell IG. Evidence that endometriosis behaves in a malignant manner. Gynecol Obstet Invest 2000; 50 (Suppl. 1) 2-10
- 19 Sneddon LU, Halsey LG, Bury NR. Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol 2017; 220: 3007-3016
- 20 Weissmann A, Reitemeier S, Hahn A. et al. Sexing domestic chicken before hatch: a new method for in ovo gender identification. Theriogenology 2013; 80: 199-205
- 21 Kuri PM, Pion E, Mahl L. et al. Deep Learning-Based Image Analysis for the Quantification of Tumor-Induced Angiogenesis in the 3D In Vivo Tumor Model-Establishment and Addition to Laser Speckle Contrast Imaging (LSCI). Cells 2022; 11: 2321
- 22 Pion E, Haerteis S, Aung T. Application of Laser Speckle Contrast Imaging (LSCI) for the Angiogenesis Measurement of Tumors in the Chorioallantoic Membrane (CAM) Model. Methods Mol Biol 2023; 2572: 141-153
- 23 Pion E, Asam C, Feder A-L. et al. Laser speckle contrast analysis (LASCA) technology for the semiquantitative measurement of angiogenesis in in-ovo-tumor-model. Microvasc Res 2021; 133: 104072
- 24 Liu Y, Liang S, Yang F. et al. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res Ther 2020; 11: 346
- 25 Pluchino N, Poppi G, Yart L. et al. Effect of local aromatase inhibition in endometriosis using a new chick embryo chorioallantoic membrane model. J Cell Mol Med 2019; 23: 5808-5812
- 26 Ria R, Loverro G, Vacca A. et al. Angiogenesis extent and expression of matrix metalloproteinase-2 and -9 agree with progression of ovarian endometriomas. Eur J Clin Invest 2002; 32: 199-206
- 27 Wang D, Liu Y, Han J. et al. Puerarin suppresses invasion and vascularization of endometriosis tissue stimulated by 17β-estradiol. PLoS One 2011; 6: e25011
- 28 Juhasz-Böss I, Hofele A, Lattrich C. et al. Matrix metalloproteinase messenger RNA expression in human endometriosis grafts cultured on a chicken chorioallantoic membrane. Fertil Steril 2010; 94: 40-45
- 29 Nap AW, Dunselman GAJ, de Goeij AF. et al. Inhibiting MMP activity prevents the development of endometriosis in the chicken chorioallantoic membrane model. Hum Reprod 2004; 19: 2180-2187
- 30 Gescher DM, Siggelkow W, Meyhoefer-Malik A. et al. A priori implantation potential does not differ in eutopic endometrium of patients with and without endometriosis. Arch Gynecol Obstet 2005; 272: 117-123
- 31 Drenkhahn M, Gescher DM, Wolber EM. et al. Expression of angiopoietin 1 and 2 in ectopic endometrium on the chicken chorioallantoic membrane. Fertil Steril 2004; 81: 869-875
- 32 Kressin P, Wolber EM, Wodrich H. et al. Vascular endothelial growth factor mRNA in eutopic and ectopic endometrium. Fertil Steril 2001; 76: 1220-1224
- 33 Ren Q, Qian Z, Jia S. et al. Vascular endothelial growth factor expression up-regulated by endometrial ischemia in secretory phase plays an important role in endometriosis. Fertil Steril 2011; 95: 2687-2689
- 34 Nap AW, Dunselman GAJ, Griffioen AW. et al. Angiostatic agents prevent the development of endometriosis-like lesions in the chicken chorioallantoic membrane. Fertil Steril 2005; 83: 793-795
- 35 Maas JW, Calhaz-Jorge C, ter Riet G. et al. Tumor necrosis factor-α but not interleukin-1β or interleukin-8 concentrations correlate with angiogenic activity of peritoneal fluid from patients with minimal to mild endometriosis. Fertil Steril 2001; 75: 180-185
- 36 Oosterlynck DJ, Meuleman C, Sobis H. et al. Angiogenic activity of peritoneal fluid from women with endometriosis. Fertil Steril 1993; 59: 778-782
- 37 Nap AW, Groothuis PG, Demir AY. et al. Tissue integrity is essential for ectopic implantation of human endometrium in the chicken chorioallantoic membrane. Hum Reprod 2003; 18: 30-34
- 38 Storgard C, Mikolon D, Stupack DG. Angiogenesis assays in the chick CAM. Methods Mol Biol 2005; 294: 123-136
- 39 Ribatti D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod Toxicol 2017; 70: 97-101
- 40 Ribatti D. The chick embryo chorioallantoic membrane in the study of tumor angiogenesis. Rom J Morphol Embryol 2008; 49: 131-135