RSS-Feed abonnieren
DOI: 10.1055/a-2650-2416
Arteriovenous loops, vascular bypasses, and inflow augmentation: Enhancing limb salvage through collaboration and microsurgical creativity
Arteriovenöse Schleifen, Gefäßbypässe und Inflow-Augmentation: Verbesserung des Extremitätenerhalts durch Zusammenarbeit und mikrochirurgische KreativitätAuthors

Abstract
Limb-threatening extremity defects resulting from high-energy trauma, chronic ischemia, infection, or oncologic resection are frequently associated with a “zone of injury” devoid of suitable recipient vessels, thereby precluding conventional free tissue transfer reconstruction. In this review article, we summarize five decades of technical development and clinical evidence on advanced microsurgical strategies – such as arteriovenous (AV) loops, vascular bypasses, and nutrient flaps – aimed at restoring vascular continuity and enabling durable soft tissue coverage when local anastomosis is precluded. Regardless of the technique employed, meticulous microsurgical execution, thoughtful staging, and interdisciplinary collaboration among plastic, orthopedic, and vascular surgeons are critical to achieving optimal outcomes. Collectively, these strategies provide a versatile, evidence-based armamentarium that enables reconstructive surgeons to preserve limb length, secure durable soft tissue coverage, and restore meaningful function to extremities once considered unsalvageable.
Zusammenfassung
Extremitätenbedrohende Defekte, verursacht durch Hochenergie-Trauma, chronische Ischämie, Infektionen oder onkologische Resektionen, gehen häufig mit einer „Verletzungszone“ einher, die keine geeigneten Empfängergefäße aufweist und eine konventionelle Rekonstruktion mittels freiem Gewebetransfer unmöglich macht. In diesem Übersichtsartikel fassen wir fünf Jahrzehnte technischer Entwicklungen und klinischer Evidenz zu fortgeschrittenen mikrochirurgischen Strategien zusammen – darunter arteriovenöse (AV) Schleifen, Gefäßbypässe und nutritive Lappenplastiken –, die der Wiederherstellung der Gefäßkontinuität und der dauerhaften Weichteildeckung dienen, wenn eine lokale Anastomose nicht möglich ist. Unabhängig von der gewählten Technik sind präzise mikrochirurgische Ausführung, durchdachte Operationsplanung in mehreren Phasen sowie die interdisziplinäre Zusammenarbeit zwischen plastischen, orthopädischen und gefäßchirurgischen Fachdisziplinen entscheidend für ein optimales Ergebnis. Zusammengenommen stellen diese Strategien ein vielseitiges, evidenzbasiertes Instrumentarium dar, das es rekonstruktiven Chirurgen ermöglicht, die Extremitätenlänge zu erhalten, eine stabile Weichteildeckung zu erreichen und eine funktionelle Wiederherstellung zu erzielen.
Publikationsverlauf
Eingereicht: 29. April 2025
Angenommen: 01. Juli 2025
Artikel online veröffentlicht:
29. September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Gopal S, Majumder S, Batchelor AG. et al. Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Joint Surg Br 2000; 82: 959-966
- 2 Levin LS. The reconstructive ladder. An orthoplastic approach. Orthop Clin North Am 1993; 24: 393-409
- 3 Tintle SM, Levin LS. The reconstructive microsurgery ladder in orthopaedics. Injury 2013; 44: 376-385
- 4 Momeni A, Krischak S, Bannasch H. The thoracodorsal artery perforator flap with a vascularized scapular segment for reconstruction of a composite lower extremity defect. Microsurgery 2006; 26: 515-518
- 5 Bannasch H, Strohm PC, Al Awadi K. et al. Technical refinements of composite thoracodorsal system free flaps for 1-stage lower extremity reconstruction resulting in reduced donor-site morbidity. Ann Plast Surg 2008; 60: 386-390
- 6 Godina M. Early microsurgical reconstruction of complex trauma of the extremities. Plast Reconstr Surg 1986; 78: 285-292
- 7 Mathes SJ, Alpert BS, Chang N. Use of the muscle flap in chronic osteomyelitis: experimental and clinical correlation. Plast Reconstr Surg 1982; 69: 815-829
- 8 Lawson R, Levin LS. Principles of free tissue transfer in orthopaedic practice. J Am Acad Orthop Surg 2007; 15: 290-299
- 9 Yazar S, Lin CH. Selection of recipient vessel in traumatic lower extremity. J Reconstr Microsurg 2012; 28: 199-204
- 10 Clarke-Pearson EM, Kim PS. An effective method to access recipient vessels outside the zone of injury in free flap reconstruction of the lower extremity. Ann Plast Surg 2014; 73 : S136-S138
- 11 Tsai YT, Lin TS. The suitability of end-to-side microvascular anastomosis in free flap transfer for limb reconstruction. Ann Plast Surg 2012; 68: 171-174
- 12 Lai CS, Shen CH, Chang YT. et al. Recipient vessel selection for multiple free flap transfers in head and neck reconstruction at different periods. Microsurgery 2021; 41: 438-447
- 13 Khouri RK, Cooley BC, Kunselman AR. et al. A prospective study of microvascular free-flap surgery and outcome. Plast Reconstr Surg 1998; 102: 711-721
- 14 Medina ND, Fischer JP, Fosnot J. et al. Lower extremity free flap outcomes using an anastomotic venous coupler device. Ann Plast Surg 2014; 72: 176-179
- 15 Nelson JA, Fischer JP, Grover R. et al. Vein grafting your way out of trouble: Examining the utility and efficacy of vein grafts in microsurgery. J Plast Reconstr Aesthet Surg 2015; 68: 830-836
- 16 Gazyakan E, Xiong L, Sun J. et al. Vein Grafting in Microsurgical Lower Extremity Reconstruction: Outcome Analysis of Primary versus Secondary Salvage Procedures. J Reconstr Microsurg 2021; 37: 608-616
- 17 Vlastou C, Earle AS, Jordan R. Vein grafts in reconstructive microsurgery of the lower extremity. Microsurgery 1992; 13: 234-235
- 18 Bayramiçli M, Tetik C, Sönmez A. et al. Reliability of primary vein grafts in lower extremity free tissue transfers. Ann Plast Surg 2002; 48: 21-29
- 19 Park D, Cho S, Han A. et al. Outcomes after Arterial or Venous Reconstructions in Limb Salvage Surgery for Extremity Soft Tissue Sarcoma. J Korean Med Sci 2018; 33: e265
- 20 Arikawa M, Akazawa S, Kageyama D. et al. Nonreversed great saphenous vein grafts for vascular reconstruction after resection of lower-limb sarcoma. J Plast Reconstr Aesthet Surg 2024; 97: 65-70
- 21 Karanas YL, Yim KK, Johannet P. et al. Use of 20 cm or longer interposition vein grafts in free flap reconstruction of the trunk. Plast Reconstr Surg 1998; 101: 1262-1267
- 22 Langdell HC, Shammas RL, Atia A. et al. Vein Grafts in Free Flap Reconstruction: Review of Indications and Institutional Pearls. Plast Reconstr Surg 2022; 149: 742-749
- 23 Nahabedian MY, Singh N, Deune EG. et al. Recipient vessel analysis for microvascular reconstruction of the head and neck. Ann Plast Surg 2004; 52: 148-155 discussion 156–157
- 24 Henn D, Bigdeli AK, Horsch M. et al. Venous bypass grafts versus arteriovenous loops as recipient vessels for microvascular anastomosis in lower extremity reconstructions: A matched-pair analysis. Microsurgery 2020; 40: 12-18
- 25 Sorensen JL, Muchardt O, Reumert T. Temporary arteriovenous shunt prior to free flap transfer. Scand J Plast Reconstr Surg Hand Surg 1990; 24: 43-46
- 26 Cho HE, Roh SG, Lee NH. et al. Breakthrough Technique for Free Tissue Transfer of Poorly Vascularized Lower Extremity: Arteriovenous Loop Revisited. Arch Plast Surg 2015; 42: 652-655
- 27 Momeni A, Lanni MA, Levin LS. et al. Does the use of arteriovenous loops increase complications rates in posttraumatic microsurgical lower extremity reconstruction? – A matched-pair analysis. Microsurgery 2018; 38: 605-610
- 28 Henn D, Wahmann MST, Horsch M. et al. One-Stage versus Two-Stage Arteriovenous Loop Reconstructions: An Experience on 103 Cases from a Single Center. Plast Reconstr Surg 2019; 143: 912-924
- 29 Cavadas PC. Arteriovenous vascular loops in free flap reconstruction of the extremities. Plast Reconstr Surg 2008; 121: 514-520
- 30 Knackstedt R, Aliotta R, Gatherwright J. et al. Single-stage versus two-stage arteriovenous loop microsurgical reconstruction: A meta-analysis of the literature. Microsurgery 2018; 38: 706-717
- 31 Muramatsu K, Shigetomi M, Ihara K. et al. Vascular complication in free tissue transfer to the leg. Microsurgery 2001; 21: 362-365
- 32 Thorud JC, Plemmons B, Buckley CJ. et al. Mortality After Nontraumatic Major Amputation Among Patients With Diabetes and Peripheral Vascular Disease: A Systematic Review. J Foot Ankle Surg 2016; 55: 591-599
- 33 Gershater MA, Löndahl M, Nyberg P. et al. Complexity of factors related to outcome of neuropathic and neuroischaemic/ischaemic diabetic foot ulcers: a cohort study. Diabetologia 2009; 52: 398-407
- 34 Karp NS, Kasabian AK, Siebert JW. et al. Microvascular free-flap salvage of the diabetic foot: a 5-year experience. Plast Reconstr Surg 1994; 94: 834-840
- 35 Biancari F, Alback A, Ihlberg L. et al. Angiographic runoff score as a predictor of outcome following femorocrural bypass surgery. Eur J Vasc Endovasc Surg 1999; 17: 480-485
- 36 Kallio M, Vikatmaa P, Kantonen I. et al. Strategies for free flap transfer and revascularisation with long-term outcome in the treatment of large diabetic foot lesions. Eur J Vasc Endovasc Surg 2015; 50: 223-230
- 37 Lorenzetti F, Tukiainen E, Alback A. et al. Blood flow in a pedal bypass combined with a free muscle flap. Eur J Vasc Endovasc Surg 2001; 22: 161-164
- 38 Lorenzetti F, Suominen S, Tukiainen E. et al. Evaluation of blood flow in free microvascular flaps. J Reconstr Microsurg 2001; 17: 163-167
- 39 Tukiainen E, Laurila K, Kallio M. et al. Internal arteriovenous fistula within a radial forearm flap – a novel technique to increase femorodistal bypass graft flow to the diabetic foot and flap covering ischaemic tissue loss. Eur J Vasc Endovasc Surg 2006; 31: 423-430
- 40 Colen LB. Limb salvage in the patient with severe peripheral vascular disease: the role of microsurgical free-tissue transfer. Plast Reconstr Surg 1987; 79: 389-395
- 41 Randon C, Jacobs B, De Ryck F. et al. A 15-year experience with combined vascular reconstruction and free flap transfer for limb-salvage. Eur J Vasc Endovasc Surg 2009; 38: 338-345
- 42 Moran SL, Illig KA, Green RM. et al. Free-tissue transfer in patients with peripheral vascular disease: a 10-year experience. Plast Reconstr Surg 2002; 109: 999-1006
- 43 Tukiainen E, Kallio M, Lepäntalo M. Advanced leg salvage of the critically ischemic leg with major tissue loss by vascular and plastic surgeon teamwork: Long-term outcome. Ann Surg 2006; 244: 949-957 discussion 957–958
- 44 Rainer C, Schwabegger AH, Meirer R. et al. Microsurgical management of the diabetic foot. J Reconstr Microsurg 2003; 19: 543-553
- 45 Ross PE, Deleyiannis FW. Head Loss As an Explanation of the Steal Phenomenon in Microvascular Surgery. Eplasty 2015; 15: e45
- 46 Sonntag BV, Murphy RX, Chernofsky MA. et al. Microvascular steal phenomenon in lower extremity reconstruction. Ann Plast Surg 1995; 34: 336-339 discussion 339–340
- 47 Patel RA, Ghosh K, Shakir A. et al. Vascular Steal Phenomenon in Lower Extremity Reconstruction: A Review of Literature and Case Report. Ann Plast Surg 2025; 94: 487-491
- 48 Mimoun M, Hilligot P, Baux S. The nutrient flap: a new concept of the role of the flap and application to the salvage of arteriosclerotic lower limbs. Plast Reconstr Surg 1989; 84: 458-467
- 49 Tanaka K, Igari K, Kishino M. et al. The possibility of free tissue transfer as a nutrient flap for critical ischemic foot: A case report. Microsurgery 2017; 37: 694-698
- 50 Kagaya Y, Ohura N, Mori S. et al. Evidence of nutritional vascular formation from the “nutrient flap” in a patient with no-option chronic limb-threatening ischemia: An indocyanine green fluorescence imaging study. J Vasc Surg Cases Innov Tech 2022; 8: 408-412