Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
          
          https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000146.xml
        Diabetes aktuell 2025; 23(06): 242-245
DOI: 10.1055/a-2650-8582
   DOI: 10.1055/a-2650-8582
Gesellschaft
      VDBD
   Diabetestherapie: Risikofaktor Hitze
Steigender Beratungs- und SchulungsbedarfAuthors

Zusammenfassung
Ob auf Reisen oder Sommer in eigenen Gefilden: hohe Temperaturen können die Wirksamkeit von Medikamenten oder die Funktionalität technischer Hilfsmittel zur Diabetestherapie beeinträchtigen. So verliert Insulin bei großer Hitze an Stabilität, Glukosemesssysteme können ungenaue Werte liefern und Akkus oder Batterien von Insulinpumpen sowie rtCGM-Systemen überhitzen. Daher ist es erforderlich, Patient:innen gezielt über diese potenziellen Risiken und Lösungsansätze zu informieren.
Publication History
Article published online:
15 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
- 
            Literatur
- 1 Freckmann G, Pleus S, Haug C. et al. Increasing local blood flow by warming the application site: Beneficial effects on postprandial glycemic excursions. J Diabetes Sci Technol 2012; 6: 780-785
- 2 Heinemann L. Air Bubbles in Insulin Pumps: A Clinically Relevant Issue?. J Diabetes Sci Technol 2022; 16: 1351-1355
- 3 Heinemann L. Diabetes-Technology and the Environment: What Do We Have to Consider?. J Diabetes Sci Technol 2023; 17: 607-610
- 4 Herr JK, Keith S, Klug R, Pettis RJ. Characterizing Normal-use Temperature Conditions of Pumped Insulin. J Diabetes Sci Technol 2014; 8: 850-854
- 5 Koivisto VA, Fortney S, Hendler R, Felig P. A rise in ambient temperature augments insulin absorption in diabetic patients. Metabolism 1981; 30: 402-405
- 6 Koivisto VA. Influence of heat on insulin absorption: Different effects on amorphous and soluble insulins. Acta Diabetol Lat 1983; 20: 175-178
- 7 Musholt PB, Schipper C, Thomé N. et al. Dynamic electrochemistry corrects for hematocrit interference on blood glucose determinations with patient self-measurement devices. J Diabetes Sci Technol 2011; 5: 1167-1175
- 8 Nerhus K, Rustat P, Sandberg S. Effect of ambient temperature on analytical performance of self-monitoring blood glucose systems. Diabetes Tech Ther 2011; 13: 883-892
- 9 Pongtharangkul T, Chuekitkumchorn P, Suwanampa N. et al. Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration. AMB Express 2015; 5: 68
- 10 Ramljak S, Lock JP, Schipper C. et al. Hematocrit interference of blood glucose meters for patient self-measurement. J Diabetes Sci Technol 2013; 7: 179-189
- 11 Richter B, Bongaerts B, Metzendorf MI. Thermal stability and storage of human insulin. Cochrane Database Syst Rev 2023; 11: CD015385
- 12 Schlüter S, Deiss D, Gehr B. et al. Glukosemessung und -kontrolle bei Patienten mit Typ-1- oder Typ-2-Diabetes. Diabetologie 2022; 17: 111-132
- 13 Sindelka G, Heinemann L, Berger M. et al. Effect of insulin concentration, subcutaneous fat thickness and skin temperature on subcutaneous insulin absorption in healthy subjects. Diabetologia 1994; 37: 377-380
- 14 Thomas A, Heinemann L. External Physical and Technical Influences on Medical Devices for Diabetes Therapy. J Diabetes Sci Technol 2023; 17: 826-832
- 15 TÜV Süd. Accessed July 11, 2025 at: https://www.tuvsud.com/de-de/-/media/de/corporate/pdf/presse/2021/november/223_ps_sicheres-laden-von-akkus-im-haushalt.pdf
- 16 Vázquez-Figueroa E, Chaparro-Riggers J, Bommarius AS. Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept. Chembiochem 2007; 8: 2295-2301
 
     
      
    