Subscribe to RSS
DOI: 10.1055/a-2655-2684
Circulatory Support for High-Risk Coronary Artery Bypass Grafting and Coronary Interventions: Where is the Evidence?

Abstract
Coronary artery disease remains the leading cause of morbidity and mortality worldwide. Patients with ischemic cardiomyopathy or other high-risk features undergoing coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI) present significant perioperative challenges due to elevated procedural risks. Mechanical circulatory support (MCS) devices such as the intra-aortic balloon pump, Impella devices, and venoarterial extracorporeal membrane oxygenation have increasingly been used to mitigate these risks. This review aims to evaluate the evidence supporting the use of temporary MCS in high-risk CABG and PCI, define high-risk patient populations, and compare device-specific benefits, risks, and clinical outcomes.
Keywords
coronary artery disease - percutaneous coronary intervention - coronary artery bypass grafting - mechanical circulatory supportPublication History
Article published online:
30 July 2025
© 2025. International College of Angiology. This article is published by Thieme.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Lala A, Desai AS. The role of coronary artery disease in heart failure. Heart Fail Clin 2014; 10 (02) 353-365
- 2 Mozaffarian D, Benjamin EJ, Go AS. et al; Writing Group Members. American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2016 update: a report from the American Heart Association. Circulation 2016; 133 (04) e38-e360 Erratum in: Circulation. 2016;133(15):e38 –e360
- 3 Velazquez EJ, Lee KL, Jones RH. et al; STICHES Investigators. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 2016; 374 (16) 1511-1520
- 4 Howlett JG, Stebbins A, Petrie MC. et al; STICH Trial Investigators. CABG improves outcomes in patients with ischemic cardiomyopathy: 10-year follow-up of the STICH trial. JACC Heart Fail 2019; 7 (10) 878-887
- 5 Topkara VK, Cheema FH, Kesavaramanujam S. et al. Coronary artery bypass grafting in patients with low ejection fraction. Circulation 2005; 112 (9, Suppl): I344-I350
- 6 Baran DA, Jaiswal A, Hennig F, Potapov E. Temporary mechanical circulatory support: devices, outcomes, and future directions. J Heart Lung Transplant 2022; 41 (06) 678-691
- 7 Dangl M, Albosta M, Butros H, Loebe M. Temporary mechanical circulatory support: left, right, and biventricular devices. Curr Cardiol Rev 2023; 19 (05) 27-42
- 8 Society of Thoracic Surgeons. STS Adult Cardiac Surgery Risk Calculator [online]. Chicago, IL: The Society of Thoracic Surgeons; 2023. . Accessed May 17, 2025 at: https://riskcalc.sts.org
- 9 Barbash IM, Finkelstein A, Barsheshet A. et al. Outcomes of patients at estimated low, intermediate, and high risk undergoing transcatheter aortic valve implantation for aortic stenosis. Am J Cardiol 2015; 116 (12) 1916-1922
- 10 EuroSCORE Project Group. EuroSCORE II Risk Calculator [online]. Cambridge, UK: Royal Papworth Hospital NHS Foundation Trust; 2012. . Accessed May 17, 2025 at: https://www.euroscore.org/index.php?id=17
- 11 Katz JN, Stebbins AL, Alexander JH. et al; TRIUMPH Investigators. Predictors of 30-day mortality in patients with refractory cardiogenic shock following acute myocardial infarction despite a patent infarct artery. Am Heart J 2009; 158 (04) 680-687
- 12 Hochman JS, Sleeper LA, Webb JG. et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med 1999; 341 (09) 625-634
- 13 Nagendran J, Norris CM, Graham MM. et al; APPROACH Investigators. Coronary revascularization for patients with severe left ventricular dysfunction. Ann Thorac Surg 2013; 96 (06) 2038-2044
- 14 Fadah K, Hechanova A, Mukherjee D. Epidemiology, pathophysiology, and management of coronary artery disease in the elderly. Int J Angiol 2022; 31 (04) 244-250
- 15 Sepehri A, Beggs T, Hassan A. et al. The impact of frailty on outcomes after cardiac surgery: a systematic review. J Thorac Cardiovasc Surg 2014; 148 (06) 3110-3117
- 16 Chua TKT, Gao F, Chia SY. et al. Long-term mortality after isolated coronary artery bypass grafting and risk factors for mortality. J Cardiothorac Surg 2024; 19 (01) 429
- 17 Dixon LK, Dimagli A, Di Tommaso E. et al. Females have an increased risk of short-term mortality after cardiac surgery compared to males: insights from a national database. J Card Surg 2022; 37 (11) 3507-3519
- 18 Al-Ebrahim KE, Baghaffar AH, Fatani MA. et al. Female gender in cardiac surgery: is it still a significant risk? A retrospective study in Saudi Arabia. Heart Surg Forum 2023; 26 (06) E705-E713
- 19 Soltesz E. Mechanical circulatory support in high-risk coronary artery bypass graft surgery. Interv Cardiol 2022; 17 (Suppl. 01) 23-24
- 20 Panza JA, Ellis AM, Al-Khalidi HR. et al. Myocardial viability and long-term outcomes in ischemic cardiomyopathy. N Engl J Med 2019; 381 (08) 739-748
- 21 Sohn SH, Kang Y, Kim JS, Park EA, Lee W, Hwang HY. Impact of myocardial viability on long-term outcomes after surgical revascularization. Thorac Cardiovasc Surg 2024; 72 (06) 441-448
- 22 Liga R, Colli A, Taggart DP, Boden WE, De Caterina R. Myocardial revascularization in patients with ischemic cardiomyopathy: for whom and how. J Am Heart Assoc 2023; 12 (06) e026943
- 23 Varma PK, Radhakrishnan RM, Gopal K, Krishna N, Jose R. Selecting the appropriate patients for coronary artery bypass grafting in ischemic cardiomyopathy-importance of myocardial viability. Indian J Thorac Cardiovasc Surg 2024; 40 (03) 341-352
- 24 Levine GN, Bates ER, Blankenship JC. et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 2011; 124 (23) 2574-2609 Erratum in: Circulation. 2012;125(8):e411
- 25 Atkinson TM, Ohman EM, O'Neill WW, Rab T, Cigarroa JE. Interventional Scientific Council of the American College of Cardiology. A practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention: an interventional perspective. JACC Cardiovasc Interv 2016; 9 (09) 871-883
- 26 Romeo F, Acconcia MC, Sergi D. et al. Lack of intra-aortic balloon pump effectiveness in high-risk percutaneous coronary interventions without cardiogenic shock: a comprehensive meta-analysis of randomised trials and observational studies. Int J Cardiol 2013; 167 (05) 1783-1793
- 27 Chieffo A, Dudek D, Hassager C. et al. Joint EAPCI/ACVC expert consensus document on percutaneous ventricular assist devices. Eur Heart J Acute Cardiovasc Care 2021; 10 (05) 570-583
- 28 Krishna M, Zacharowski K. Principles of intra-aortic balloon pump counterpulsation. Contin Educ Anaesth Crit Care Pain 2009; 9 (01) 24-28
- 29 Prondzinsky R, Unverzagt S, Russ M. et al. Hemodynamic effects of intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: the prospective, randomized IABP shock trial. Shock 2012; 37 (04) 378-384
- 30 Thiele H, Zeymer U, Thelemann N. et al; IABP-SHOCK II Trial (Intraaortic Balloon Pump in Cardiogenic Shock II) Investigators, IABP-SHOCK II Investigators. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome of the randomized IABP-SHOCK II trial. Circulation 2019; 139 (03) 395-403
- 31 Gutfinger DE, Ott RA, Miller M. et al. Aggressive preoperative use of intraaortic balloon pump in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg 1999; 67 (03) 610-613
- 32 Christenson JT, Simonet F, Badel P, Schmuziger M. Optimal timing of preoperative intraaortic balloon pump support in high-risk coronary patients. Ann Thorac Surg 1999; 68 (03) 934-939
- 33 Holman WL, Li Q, Kiefe CI. et al. Prophylactic value of preincision intra-aortic balloon pump: analysis of a statewide experience. J Thorac Cardiovasc Surg 2000; 120 (06) 1112-1119
- 34 Suzuki T, Okabe M, Handa M, Yasuda F, Miyake Y. Usefulness of preoperative intraaortic balloon pump therapy during off-pump coronary artery bypass grafting in high-risk patients. Ann Thorac Surg 2004; 77 (06) 2056-2059 , discussion 2059–2060
- 35 Wang J, Yu W, Gao M, Gu C, Yu Y. Preoperative prophylactic intraaortic balloon pump reduces the incidence of postoperative acute kidney injury and short-term death of high-risk patients undergoing coronary artery bypass grafting: a meta-analysis of 17 studies. Ann Thorac Surg 2016; 101 (05) 2007-2019
- 36 Deppe AC, Weber C, Liakopoulos OJ. et al. Preoperative intra-aortic balloon pump use in high-risk patients prior to coronary artery bypass graft surgery decreases the risk for morbidity and mortality-A meta-analysis of 9,212 patients. J Card Surg 2017; 32 (03) 177-185
- 37 Hu Y, Fan M, Zhang P, Li R. Preoperative prophylactic insertion of intraaortic balloon pumps in critically ill patients undergoing coronary artery bypass surgery: a meta-analysis of RCTS. J Cardiothorac Surg 2024; 19 (01) 489
- 38 Pilarczyk K, Boening A, Jakob H. et al. Preoperative intra-aortic counterpulsation in high-risk patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials†. Eur J Cardiothorac Surg 2016; 49 (01) 5-17
- 39 Cohen M, Urban P, Christenson JT. et al; Benchmark Registry Collaborators. Intra-aortic balloon counterpulsation in US and non-US centres: results of the Benchmark Registry. Eur Heart J 2003; 24 (19) 1763-1770
- 40 Perera D, Stables R, Thomas M. et al; BCIS-1 Investigators. Elective intra-aortic balloon counterpulsation during high-risk percutaneous coronary intervention: a randomized controlled trial. JAMA 2010; 304 (08) 867-874
- 41 Perera D, Stables R, Clayton T. et al; BCIS-1 Investigators. Long-term mortality data from the balloon pump-assisted coronary intervention study (BCIS-1): a randomized, controlled trial of elective balloon counterpulsation during high-risk percutaneous coronary intervention. Circulation 2013; 127 (02) 207-212
- 42 Lee JM, Park J, Kang J. et al. The efficacy and safety of mechanical hemodynamic support in patients undergoing high-risk percutaneous coronary intervention with or without cardiogenic shock: Bayesian approach network meta-analysis of 13 randomized controlled trials. Int J Cardiol 2015; 184: 36-46
- 43 Zheng XY, Wang Y, Chen Y. et al. The effectiveness of intra-aortic balloon pump for myocardial infarction in patients with or without cardiogenic shock: a meta-analysis and systematic review. BMC Cardiovasc Disord 2016; 16 (01) 148
- 44 Kuno T, Takagi H, Ando T. et al. Safety and efficacy of mechanical circulatory support with Impella or intra-aortic balloon pump for high-risk percutaneous coronary intervention and/or cardiogenic shock: insights from a network meta-analysis of randomized trials. Catheter Cardiovasc Interv 2021; 97 (05) E636-E645
- 45 Zein R, Patel C, Mercado-Alamo A, Schreiber T, Kaki A. A review of the Impella devices. Interv Cardiol 2022; 17: e05
- 46 O'Neill WW, Kleiman NS, Moses J. et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation 2012; 126 (14) 1717-1727
- 47 Pietrasik A, Gąsecka A, Pawłowski T. et al. Multicenter registry of Impella-assisted high-risk percutaneous coronary interventions and cardiogenic shock in Poland (IMPELLA-PL). Kardiol Pol 2023; 81 (11) 1103-1112
- 48 Corujo Rodriguez A, Richter E, Ibekwe SO, Shah T, Faloye AO. Postcardiotomy shock syndrome: a narrative review of perioperative diagnosis and management. J Cardiothorac Vasc Anesth 2023; 37 (12) 2621-2633
- 49 Kienlein RM, Trauzeddel RF, Akbari N. et al. Outcome and complications in postcardiotomy cardiogenic shock treated with extracorporeal life support - a systematic review and meta-analysis. BMC Anesthesiol 2025; 25 (01) 29
- 50 Sommer W, Arif R, Kremer J. et al. Temporary circulatory support with surgically implanted microaxial pumps in postcardiotomy cardiogenic shock following coronary artery bypass surgery. JTCVS Open 2023; 15: 252-260
- 51 Smith NJ, Ramamurthi A, Joyce LD, Durham LA, Kohmoto T, Joyce DL. Temporary mechanical circulatory support prevents the occurrence of a low-output state in high-risk coronary artery bypass grafting: a case series. J Card Surg 2021; 36 (03) 864-871
- 52 Ranganath NK, Nafday HB, Zias E. et al. Concomitant temporary mechanical support in high-risk coronary artery bypass surgery. J Card Surg 2019; 34 (12) 1569-1572
- 53 Benke K, Korça E, Boltjes A. et al. Preventive Impella support in high-risk patients undergoing cardiac surgery. J Clin Med 2022; 11 (18) 5404
- 54 Ramzy D, Soltesz E, Anderson M. New surgical circulatory support system outcomes. ASAIO J 2020; 66 (07) 746-752
- 55 Vetrugno V, Waqas M, Sandhu K. et al. 71 outcome in patients undergoing high-risk PCI using Impella circulatory support - 10 year experience. Heart 2019; 105: A60-A61
- 56 Elia E, Iannaccone M, D'Ascenzo F. et al. Short term outcomes of Impella circulatory support for high-risk percutaneous coronary intervention: a systematic review and meta-analysis. Catheter Cardiovasc Interv 2022; 99 (01) 27-36
- 57 Basir MB, Bentley D, Truesdell AG. et al. Clinical outcomes of patients experiencing transient loss of pulse pressure during high-risk PCI with Impella. J Card Fail 2024; 30 (10) 1287-1299
- 58 Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail 2018; 11 (09) e004905
- 59 Banfi C, Pozzi M, Brunner ME. et al. Veno-arterial extracorporeal membrane oxygenation: an overview of different cannulation techniques. J Thorac Dis 2016; 8 (09) E875-E885
- 60 Kowalewski M, Zieliński K, Brodie D. et al. Venoarterial extracorporeal membrane oxygenation for postcardiotomy shock-analysis of the Extracorporeal Life Support Organization Registry. Crit Care Med 2021; 49 (07) 1107-1117
- 61 Bhamidipati CM. et al. Venoarterial extracorporeal membrane oxygenation for high-risk coronary artery bypass grafting: a systematic review and meta-analysis. Ann Thorac Surg Short Rep 2025; 4: 100-107
- 62 Dobrilovic N, Lateef O, Michalak L, Delibasic M, Raman J. Extracorporeal membrane oxygenation bridges inoperable patients to definitive cardiac operation. ASAIO J 2019; 65 (01) 43-48
- 63 Wallinder A, Pellegrino V, Fraser JF, McGiffin DC. ECMO as a bridge to non-transplant cardiac surgery. J Card Surg 2017; 32 (08) 514-521
- 64 Radsel P, Goslar T, Bunc M, Ksela J, Gorjup V, Noc M. Emergency veno-arterial extracorporeal membrane oxygenation (VA ECMO)-supported percutaneous interventions in refractory cardiac arrest and profound cardiogenic shock. Resuscitation 2021; 160: 150-157
- 65 Myat A, Patel N, Tehrani S, Banning AP, Redwood SR, Bhatt DL. Percutaneous circulatory assist devices for high-risk coronary intervention. JACC Cardiovasc Interv 2015; 8 (02) 229-244
- 66 Bai M, Lu A, Pan C. et al. Veno-arterial extracorporeal membrane oxygenation in elective high-risk percutaneous coronary interventions. Front Med (Lausanne) 2022; 9: 913403
- 67 Dominici C, Salsano A, Nenna A. et al. On-pump beating-heart coronary artery bypass grafting in high-risk patients: a systematic review and meta-analysis. J Card Surg 2020; 35 (08) 1958-1978
- 68 Iacona GM, Bakhos JJ, Tong MZ, Bakaeen FG. Coronary artery bypass grafting in left ventricular dysfunction: when and how. Curr Opin Cardiol 2023; 38 (06) 464-470
- 69 Grothusen C, Friedrich C, Ulbricht U. et al. Coronary artery bypass grafting in patients with acute myocardial infarction and cardiogenic shock. Rev Cardiovasc Med 2022; 23 (07) 237
- 70 Sun LY, Gaudino M, Chen RJ, Bader Eddeen A, Ruel M. Long-term outcomes in patients with severely reduced left ventricular ejection fraction undergoing percutaneous coronary intervention vs coronary artery bypass grafting. JAMA Cardiol 2020; 5 (06) 631-641 Erratum in: JAMA Cardiol 2020;5(6):732
- 71 Minhas AMK, Abramov D, Chung JS. et al. Current status of perioperative temporary mechanical circulatory support during cardiac surgery. J Card Surg 2022; 37 (12) 4304-4315
- 72 Singh SK, Vinogradsky A, Kirschner M. et al. Mechanical circulatory support during surgical revascularization for ischemic cardiomyopathy. Ann Thorac Surg 2024; 117 (05) 932-939
- 73 Karami M, Eriksen E, Ouweneel DM. et al. Long-term 5-year outcome of the randomized IMPRESS in severe shock trial: percutaneous mechanical circulatory support vs. intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. Eur Heart J Acute Cardiovasc Care 2021; 10 (09) 1009-1015
- 74 De Ferrari T, Pistelli L, Franzino M. et al. MI2AMI-CS: a meta-analysis comparing Impella and IABP outcomes in acute myocardial infarction-related cardiogenic shock. Int J Cardiol 2024; 414: 132411
- 75 Hill J, Burzotta F, Chieffo A. et al. A systematic literature review and meta-analysis of Impella devices used in cardiogenic shock and high-risk percutaneous coronary intervention [Internet]. London (UK): Open Access Journals; 2018 . Accessed May 17, 2025 at: https://www.openaccessjournals.com/articles/a-systematic-literature-review-and-metaanalysis-of-impella-devices-used-in-cardiogenic-shock-and-high-risk-percutaneous-coronaryin-12956.html
- 76 Fadah K, Abraham H, Banerjee S, Mukherjee D. Navigating early management strategies in acute myocardial infarction with cardiogenic shock. Am J Cardiol 2024; 228: 34-37
- 77 Møller JE, Engstrøm T, Jensen LO. et al; DanGer Shock Investigators. Microaxial flow pump or standard care in infarct-related cardiogenic shock. N Engl J Med 2024; 390 (15) 1382-1393