Subscribe to RSS
DOI: 10.1055/a-2664-0871
Red Blood Cell Extracellular Vesicles as Key Players in Thromboinflammation
Funding This work is in part supported by the NIH, NHLBI grant 1RO1 HL157441 to N.S.K.

Abstract
Thromboinflammation is an emerging concept which highlights the interactions between coagulation and inflammation in various disease states. Activation of coagulation and inflammation are both hallmarks of hemolytic states. However, the mechanisms by which they cause adverse outcomes in hemolytic disorders is incompletely understood. A body of literature suggests that red blood cells (RBCs) play a role in thrombosis and in immune regulation. RBCs release extracellular vesicles (RBC-EVs), with increased numbers found in the circulation of patients with hemolytic disorders. In this review, we summarize the existing literature addressing the interaction of RBC-EVs with coagulation and inflammatory pathways in vitro and in vivo. Additionally, we discuss the potential contribution of RBC-EV-induced thromboinflammation in the pathogenesis of certain complications of sickle cell disease as a model of a severe hemolytic disorder.
Publication History
Received: 26 February 2025
Accepted: 23 July 2025
Accepted Manuscript online:
24 July 2025
Article published online:
07 August 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Byrnes JR, Wolberg AS. Red blood cells in thrombosis. Blood 2017; 130 (16) 1795-1799
- 2 Dobkin J, Mangalmurti NS. Immunomodulatory roles of red blood cells. Curr Opin Hematol 2022; 29 (06) 306-309
- 3 Weisel JW, Litvinov RI. Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost 2019; 17 (02) 271-282
- 4 Théry C, Witwer KW, Aikawa E. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7 (01) 1535750
- 5 Almizraq RJ, Seghatchian J, Holovati JL, Acker JP. Extracellular vesicle characteristics in stored red blood cell concentrates are influenced by the method of detection. Transfus Apher Sci 2017; 56 (02) 254-260
- 6 Noubouossie DF, Henderson MW, Mooberry M. et al. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood 2020; 135 (10) 755-765
- 7 Schrottmaier WC, Assinger A. The concept of thromboinflammation. Hamostaseologie 2024; 44 (01) 21-30
- 8 Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 2021; 18 (09) 666-682
- 9 Cappellini MD. Coagulation in the pathophysiology of hemolytic anemias. Hematology (Am Soc Hematol Educ Program) 2007; 74-78
- 10 Kato GJ, Taylor VI JG. Pleiotropic effects of intravascular haemolysis on vascular homeostasis. Br J Haematol 2010; 148 (05) 690-701
- 11 Mendonça R, Silveira AA, Conran N. Red cell DAMPs and inflammation. Inflamm Res 2016; 65 (09) 665-678
- 12 Nader E, Romana M, Connes P. The red blood cell–inflammation vicious circle in sickle cell disease. Front Immunol 2020; 11: 454
- 13 Vinchi F, Sparla R, Passos ST. et al. Vasculo-toxic and pro-inflammatory action of unbound haemoglobin, haem and iron in transfusion-dependent patients with haemolytic anaemias. Br J Haematol 2021; 193 (03) 637-658
- 14 Noubouossie DF, Key NS. Red cell extracellular vesicles and coagulation activation pathways. Curr Opin Hematol 2023; 30 (06) 194-202
- 15 Alaarg A, Schiffelers RM, van Solinge WW, van Wijk R. Red blood cell vesiculation in hereditary hemolytic anemia. Front Physiol 2013; 4: 365
- 16 Barcellini W, Zaninoni A, Giannotta JA. et al. Circulating extracellular vesicles and cytokines in congenital and acquired hemolytic anemias. Am J Hematol 2021; 96 (04) E129-E132
- 17 Nantakomol D, Dondorp AM, Krudsood S. et al. Circulating red cell-derived microparticles in human malaria. J Infect Dis 2011; 203 (05) 700-706
- 18 Nantakomol D, Palasuwan A, Chaowanathikhom M, Soogarun S, Imwong M. Red cell and platelet-derived microparticles are increased in G6PD-deficient subjects. Eur J Haematol 2012; 89 (05) 423-429
- 19 Pattanapanyasat K, Noulsri E, Fucharoen S. et al. Flow cytometric quantitation of red blood cell vesicles in thalassemia. Cytometry B Clin Cytom 2004; 57 (01) 23-31
- 20 Romana M, Connes P, Key NS. Microparticles in sickle cell disease. Clin Hemorheol Microcirc 2018; 68 (2-3): 319-329
- 21 Biagiotti S, Canonico B, Tiboni M. et al. Efficient and highly reproducible production of red blood cell-derived extracellular vesicle mimetics for the loading and delivery of RNA molecules. Sci Rep 2024; 14 (01) 14610
- 22 Arya SB, Collie SP, Parent CA. The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends Cell Biol 2024; 34 (02) 90-108
- 23 Clancy JW, Schmidtmann M, D'Souza-Schorey C. The ins and outs of microvesicles. FASEB Bioadv 2021; 3 (06) 399-406
- 24 Ridger VC, Boulanger CM, Angelillo-Scherrer A. et al; Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Microvesicles in vascular homeostasis and diseases. Thromb Haemost 2017; 117 (07) 1296-1316
- 25 Shurer CR, Kuo JC, Roberts LM. et al. Physical principles of membrane shape regulation by the glycocalyx. Cell 2019; 177 (07) 1757-1770.e21
- 26 Ebeyer-Masotta M, Eichhorn T, Fischer MB, Weber V. Impact of production methods and storage conditions on extracellular vesicles in packed red blood cells and platelet concentrates. Transfus Apher Sci 2024; 63 (02) 103891
- 27 Giebel B, Helmbrecht C. Methods to analyze EVs. Methods Mol Biol 2017; 1545: 1-20
- 28 Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci 2017; 18 (06) 1153
- 29 Danesh A, Inglis HC, Jackman RP. et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro . Blood 2014; 123 (05) 687-696
- 30 Nguyen DB, Ly TB, Wesseling MC. et al. Characterization of microvesicles released from human red blood cells. Cell Physiol Biochem 2016; 38 (03) 1085-1099
- 31 Jy W, Johansen ME, Bidot Jr C, Horstman LL, Ahn YS. Red cell-derived microparticles (RMP) as haemostatic agent. Thromb Haemost 2013; 110 (04) 751-760
- 32 Kuo WP, Tigges JC, Toxavidis V, Ghiran I. Red blood cells: a source of extracellular vesicles. Methods Mol Biol 2017; 1660: 15-22
- 33 Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int J Mol Sci 2020; 22 (01) 153
- 34 Blanc L, De Gassart A, Géminard C, Bette-Bobillo P, Vidal M. Exosome release by reticulocytes—an integral part of the red blood cell differentiation system. Blood Cells Mol Dis 2005; 35 (01) 21-26
- 35 Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol 2017; 8: 1076
- 36 de Oliveira Junior GP, Welsh JA, Pinckney B. et al. Human red blood cells release microvesicles with distinct sizes and protein composition that alter neutrophil phagocytosis. J Extracell Biol 2023; 2 (11) e107
- 37 Chiangjong W, Netsirisawan P, Hongeng S, Chutipongtanate S. Red blood cell extracellular vesicle-based drug delivery: challenges and opportunities. Front Med (Lausanne) 2021; 8: 761362
- 38 Freitas Leal JK, Lasonder E, Sharma V. et al. Vesiculation of red blood cells in the blood bank: a multi-omics approach towards identification of causes and consequences. Proteomes 2020; 8 (02) 6
- 39 Matsumoto J, Stewart T, Sheng L. et al. Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson's disease?. Acta Neuropathol Commun 2017; 5 (01) 71
- 40 Prudent M, Delobel J, Hübner A, Benay C, Lion N, Tissot JD. Proteomics of stored red blood cell membrane and storage-induced microvesicles reveals the association of flotillin-2 with band 3 complexes. Front Physiol 2018; 9: 421
- 41 Huang H, Zhu J, Fan L. et al. MicroRNA profiling of exosomes derived from red blood cell units: implications in transfusion-related immunomodulation. BioMed Res Int 2019; 2019: 2045915
- 42 Kerkelä E, Lahtela J, Larjo A, Impola U, Mäenpää L, Mattila P. Exploring transcriptomic landscapes in red blood cells, in their extracellular vesicles and on a single-cell level. Int J Mol Sci 2022; 23 (21) 12897
- 43 Kong Y, Tian X, He R. et al. The accumulation of exosome-associated microRNA-1246 and microRNA-150-3p in human red blood cell suspensions. J Transl Med 2021; 19 (01) 225
- 44 Hashemi Tayer A, Amirizadeh N, Ahmadinejad M, Nikougoftar M, Deyhim MR, Zolfaghari S. Procoagulant activity of red blood cell-derived microvesicles during red cell storage. Transfus Med Hemother 2019; 46 (04) 224-230
- 45 Varga Z, Gyurkó I, Pálóczi K. et al. Radiolabeling of extracellular vesicles with (99m)Tc for quantitative in vivo imaging studies. Cancer Biother Radiopharm 2016; 31 (05) 168-173
- 46 Gamonet C, Desmarets M, Mourey G. et al. Processing methods and storage duration impact extracellular vesicle counts in red blood cell units. Blood Adv 2020; 4 (21) 5527-5539
- 47 Li Y, Wu Y, Federzoni EA. et al. CD47 cross-dressing by extracellular vesicles expressing CD47 inhibits phagocytosis without transmitting cell death signals. eLife 2022; 11: 11
- 48 Koshiar RL, Somajo S, Norström E, Dahlbäck B. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One 2014; 9 (08) e104200
- 49 Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renné T, ten Cate H, Spronk HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 2012; 10 (07) 1355-1362
- 50 Bouchard BA, Orfeo T, Keith HN. et al. Microparticles formed during storage of red blood cell units support thrombin generation. J Trauma Acute Care Surg 2018; 84 (04) 598-605
- 51 Gao Y, Lv L, Liu S, Ma G, Su Y. Elevated levels of thrombin-generating microparticles in stored red blood cells. Vox Sang 2013; 105 (01) 11-17
- 52 Rubin O, Delobel J, Prudent M. et al. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation. Transfusion 2013; 53 (08) 1744-1754
- 53 Amara U, Flierl MA, Rittirsch D. et al. Molecular intercommunication between the complement and coagulation systems. J Immunol 2010; 185 (09) 5628-5636
- 54 Schmaier AH. The elusive physiologic role of factor XII. J Clin Invest 2008; 118 (09) 3006-3009
- 55 Zecher D, Cumpelik A, Schifferli JA. Erythrocyte-derived microvesicles amplify systemic inflammation by thrombin-dependent activation of complement. Arterioscler Thromb Vasc Biol 2014; 34 (02) 313-320
- 56 Henderson MW, Karafin M, Ilich A, Key NS. Cleavage of high molecular weight kininogen and bradykinin release by red blood cell microvesicles as a putative mechanism for hypotensive transfusion reactions. Blood 2021; 138 (Suppl. 01) 3240
- 57 Sugama Y, Malik AB. Thrombin receptor 14-amino acid peptide mediates endothelial hyperadhesivity and neutrophil adhesion by P-selectin-dependent mechanism. Circ Res 1992; 71 (04) 1015-1019
- 58 Zimmerman GA, McIntyre TM, Prescott SM. Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro . J Clin Invest 1985; 76 (06) 2235-2246
- 59 Dupuy E, Habib A, Lebret M, Yang R, Levy-Toledano S, Tobelem G. Thrombin induces angiogenesis and vascular endothelial growth factor expression in human endothelial cells: possible relevance to HIF-1alpha. J Thromb Haemost 2003; 1 (05) 1096-1102
- 60 Bachhuber BG, Sarembock IJ, Gimple LW, McNamara CA, Owens GK. Thrombin-induced mitogenesis in cultured aortic smooth muscle cells requires prolonged thrombin exposure. Am J Physiol 1995; 268 (5 Pt 1): C1141-C1147
- 61 McNamara CA, Sarembock IJ, Gimple LW, Fenton II JW, Coughlin SR, Owens GK. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest 1993; 91 (01) 94-98
- 62 Wachtfogel YT, Kucich U, James HL. et al. Human plasma kallikrein releases neutrophil elastase during blood coagulation. J Clin Invest 1983; 72 (05) 1672-1677
- 63 Wachtfogel YT, Pixley RA, Kucich U. et al. Purified plasma factor XIIa aggregates human neutrophils and causes degranulation. Blood 1986; 67 (06) 1731-1737
- 64 Liu C, Zhao W, Christ GJ, Gladwin MT, Kim-Shapiro DB. Nitric oxide scavenging by red cell microparticles. Free Radic Biol Med 2013; 65: 1164-1173
- 65 Belizaire RM, Prakash PS, Richter JR. et al. Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation. J Am Coll Surg 2012; 214 (04) 648-655 , discussion 656–657
- 66 Fischer D, Büssow J, Meybohm P. et al. Microparticles from stored red blood cells enhance procoagulant and proinflammatory activity. Transfusion 2017; 57 (11) 2701-2711
- 67 Ilvonen P, Pusa R, Härkönen K, Laitinen S, Impola U. Distinct targeting and uptake of platelet and red blood cell-derived extracellular vesicles into immune cells. J Extracell Biol 2024; 3 (01) e130
- 68 Eudailey KW, Pat B, Oh JY. et al. Plasma exosome hemoglobin released during surgery is associated with cardiac injury in animal model. Ann Thorac Surg 2023; 116 (04) 834-843
- 69 Camus SM, Gausserès B, Bonnin P. et al. Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease. Blood 2012; 120 (25) 5050-5058
- 70 Chang AL, Kim Y, Seitz AP, Schuster RM, Lentsch AB, Pritts TA. Erythrocyte-derived microparticles activate pulmonary endothelial cells in a murine model of transfusion. Shock 2017; 47 (05) 632-637
- 71 Kim Y, Goodman MD, Jung AD. et al. Microparticles from aged packed red blood cell units stimulate pulmonary microthrombus formation via P-selectin. Thromb Res 2020; 185: 160-166
- 72 Sisak S, Chae RC, Nelson KE. et al. Microvesicles from stored red blood cells induce P-selectin and von Willebrand factor release from endothelial cells via a protein kinase C-dependent mechanism. Transfus Apher Sci 2024; 63 (02) 103890
- 73 Gao Y, Jin H, Tan H, Cai X, Sun Y. Erythrocyte-derived extracellular vesicles aggravate inflammation by promoting the proinflammatory macrophage phenotype through TLR4-MyD88-NF-κB-MAPK pathway. J Leukoc Biol 2022; 112 (04) 693-706
- 74 Pat B, Oh JY, Masjoan Juncos JX. et al; Clinical Working Group. Red blood cell exosome hemoglobin content increases after cardiopulmonary bypass and mediates acute kidney injury in an animal model. J Thorac Cardiovasc Surg 2022; 164 (06) e289-e308
- 75 Das A, Valkov N, Salvador AM. et al. Red blood cell-derived extracellular vesicles mediate intercellular communication in ischemic heart failure. bioRxiv 2019; 624841
- 76 Auber M, Svenningsen P. An estimate of extracellular vesicle secretion rates of human blood cells. J Extracell Biol 2022; 1 (06) e46
- 77 Leal JKF, Adjobo-Hermans MJW, Bosman GJCGM. Red blood cell homeostasis: mechanisms and effects of microvesicle generation in health and disease. Front Physiol 2018; 9: 703
- 78 GBD 2021 Sickle Cell Disease Collaborators. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000-2021: a systematic analysis from the Global Burden of Disease Study 2021. Lancet Haematol 2023; 10 (08) e585-e599
- 79 Williams TN, Thein SL. Sickle cell anemia and its phenotypes. Annu Rev Genomics Hum Genet 2018; 19: 113-147
- 80 Steinberg MH, Sebastiani P. Genetic modifiers of sickle cell disease. Am J Hematol 2012; 87 (08) 795-803
- 81 Hebbel RP, Key NS. Microparticles in sickle cell anaemia: promise and pitfalls. Br J Haematol 2016; 174 (01) 16-29
- 82 Naik RP, Streiff MB, Haywood Jr C, Segal JB, Lanzkron S. Venous thromboembolism incidence in the Cooperative Study of Sickle Cell Disease. J Thromb Haemost 2014; 12 (12) 2010-2016
- 83 Ohene-Frempong K, Weiner SJ, Sleeper LA. et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood 1998; 91 (01) 288-294
- 84 Shome DK, Ramadorai P, Al-Ajmi A, Ali F, Malik N. Thrombotic microangiopathy in sickle cell disease crisis. Ann Hematol 2013; 92 (04) 509-515
- 85 Faes C, Sparkenbaugh EM, Pawlinski R. Hypercoagulable state in sickle cell disease. Clin Hemorheol Microcirc 2018; 68 (2-3): 301-318
- 86 Noubouossie D, Key NS, Ataga KI. Coagulation abnormalities of sickle cell disease: relationship with clinical outcomes and the effect of disease modifying therapies. Blood Rev 2016; 30 (04) 245-256
- 87 Gerotziafas GT, Van Dreden P, Chaari M. et al. The acceleration of the propagation phase of thrombin generation in patients with steady-state sickle cell disease is associated with circulating erythrocyte-derived microparticles. Thromb Haemost 2012; 107 (06) 1044-1052
- 88 Noubouossie DC, Lê PQ, Rozen L, Debaugnies F, Ferster A, Demulder A. Evaluation of the procoagulant activity of endogenous phospholipids in the platelet-free plasma of children with sickle cell disease using functional assays. Thromb Res 2012; 130 (02) 259-264
- 89 Nelsestuen GL, Kisiel W, Di Scipio RG. Interaction of vitamin K dependent proteins with membranes. Biochemistry 1978; 17 (11) 2134-2138
- 90 Whelihan MF, Lim MY, Mooberry MJ. et al. Thrombin generation and cell-dependent hypercoagulability in sickle cell disease. J Thromb Haemost 2016; 14 (10) 1941-1952
- 91 Liesner R, Mackie I, Cookson J. et al. Prothrombotic changes in children with sickle cell disease: relationships to cerebrovascular disease and transfusion. Br J Haematol 1998; 103 (04) 1037-1044
- 92 Marfaing-Koka A, Boyer-Neumann C, Wolf M, Leroy-Matheron C, Cynober T, Tchernia G. Decreased protein S activity in sickle cell disease. Nouv Rev Fr Hematol (1978) 1993; 35 (04) 425-430
- 93 Noubouossie DF, Lê PQ, Corazza F. et al. Thrombin generation reveals high procoagulant potential in the plasma of sickle cell disease children. Am J Hematol 2012; 87 (02) 145-149
- 94 van Beers EJ, Schaap MC, Berckmans RJ. et al; CURAMA study group. Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 2009; 94 (11) 1513-1519
- 95 Ataga KI, Brittain JE, Desai P. et al. Association of coagulation activation with clinical complications in sickle cell disease. PLoS One 2012; 7 (01) e29786
- 96 Setty BN, Key NS, Rao AK. et al. Tissue factor-positive monocytes in children with sickle cell disease: correlation with biomarkers of haemolysis. Br J Haematol 2012; 157 (03) 370-380
- 97 Gordon EM, Klein BL, Berman BW, Strandjord SE, Simon JE, Coccia PF. Reduction of contact factors in sickle cell disease. J Pediatr 1985; 106 (03) 427-430
- 98 Miller RL, Verma PS, Adams RG. Studies of the kallikrein-kinin system in patients with sickle cell anemia. J Natl Med Assoc 1983; 75 (06) 551-556
- 99 Verma PS, Adams RG, Miller RL. Reduced plasma kininogen concentration during sickle cell crisis. Res Commun Chem Pathol Pharmacol 1983; 41 (02) 313-322
- 100 Sparkenbaugh EM, Henderson MW, Miller-Awe M. et al. Factor XII contributes to thrombotic complications and vaso-occlusion in sickle cell disease. Blood 2023; 141 (15) 1871-1883
- 101 Sparkenbaugh EM, Kasztan M, Henderson MW. et al. High molecular weight kininogen contributes to early mortality and kidney dysfunction in a mouse model of sickle cell disease. J Thromb Haemost 2020; 18 (09) 2329-2340
- 102 Vissa M, Larkin SK, Vichinsky EP, Kuypers FA, Soupene E. Assessment of total and unbound cell-free heme in plasma of patients with sickle cell disease. Exp Biol Med (Maywood) 2023; 248 (10) 897-907
- 103 Ferreira A, Balla J, Jeney V, Balla G, Soares MP. A central role for free heme in the pathogenesis of severe malaria: the missing link?. J Mol Med (Berl) 2008; 86 (10) 1097-1111
- 104 Camus SM, De Moraes JA, Bonnin P. et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood 2015; 125 (24) 3805-3814
- 105 Nader E, Romana M, Guillot N. et al. Association between nitric oxide, oxidative stress, eryptosis, red blood cell microparticles, and vascular function in sickle cell anemia. Front Immunol 2020; 11: 551441
- 106 Olatunya OS, Lanaro C, Longhini AL. et al. Red blood cells microparticles are associated with hemolysis markers and may contribute to clinical events among sickle cell disease patients. Ann Hematol 2019; 98 (11) 2507-2521
- 107 Tantawy AA, Adly AA, Ismail EA, Habeeb NM, Farouk A. Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: relation to cardiovascular complications. Platelets 2013; 24 (08) 605-614
- 108 Awojoodu AO, Keegan PM, Lane AR. et al. Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD. Blood 2014; 124 (12) 1941-1950
- 109 Vinchi F, Costa da Silva M, Ingoglia G. et al. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood 2016; 127 (04) 473-486
- 110 An R, Man Y, Cheng K. et al. Sickle red blood cell-derived extracellular vesicles activate endothelial cells and enhance sickle red cell adhesion mediated by von Willebrand factor. Br J Haematol 2023; 201 (03) 552-563
- 111 Gemel J, Mao Y, Lapping-Carr G, Beyer EC. Gap junctions between endothelial cells are disrupted by circulating extracellular vesicles from sickle cell patients with acute chest syndrome. Int J Mol Sci 2020; 21 (23) 8884
- 112 Gemel J, Zhang J, Mao Y, Lapping-Carr G, Beyer EC. Circulating small extracellular vesicles may contribute to vaso-occlusive crises in sickle cell disease. J Clin Med 2022; 11 (03) 816
- 113 Lapping-Carr G, Gemel J, Mao Y. et al. Circulating extracellular vesicles from patients with acute chest syndrome disrupt adherens junctions between endothelial cells. Pediatr Res 2021; 89 (04) 776-784
- 114 Garnier Y, Ferdinand S, Garnier M. et al. Plasma microparticles of sickle patients during crisis or taking hydroxyurea modify endothelium inflammatory properties. Blood 2020; 136 (02) 247-256
- 115 Beckman JD, Abdullah F, Chen C. et al. Endothelial TLR4 expression mediates vaso-occlusive crisis in sickle cell disease. Front Immunol 2021; 11: 613278
- 116 Belcher JD, Chen C, Nguyen J. et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 2014; 123 (03) 377-390
- 117 Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 2014; 123 (24) 3818-3827
- 118 Jutant EM, Voiriot G, Labbé V. et al. Endothelial dysfunction and hypercoagulability in severe sickle-cell acute chest syndrome. ERJ Open Res 2021; 7 (04) 00496-2021
- 119 Hierso R, Lemonne N, Villaescusa R. et al. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study. Br J Haematol 2017; 176 (05) 805-813
- 120 Kasar M, Boğa C, Yeral M, Asma S, Kozanoglu I, Ozdogu H. Clinical significance of circulating blood and endothelial cell microparticles in sickle-cell disease. J Thromb Thrombolysis 2014; 38 (02) 167-175
- 121 Piccin A, Murphy C, Eakins E. et al. Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia. J Extracell Vesicles 2015; 4: 28414
- 122 Francis Jr RB, Johnson CS. Vascular occlusion in sickle cell disease: current concepts and unanswered questions. Blood 1991; 77 (07) 1405-1414
- 123 Boros L, Thomas C, Weiner WJ. Large cerebral vessel disease in sickle cell anaemia. J Neurol Neurosurg Psychiatry 1976; 39 (12) 1236-1239
- 124 Merkel KH, Ginsberg PL, Parker Jr JC, Post MJ. Cerebrovascular disease in sickle cell anemia: a clinical, pathological and radiological correlation. Stroke 1978; 9 (01) 45-52
- 125 Oppenheimer EH, Esterly JR. Pulmonary changes in sickle cell disease. Am Rev Respir Dis 1971; 103 (06) 858-859
- 126 Hasen HB, Raines SL. Priapism associated with sickle cell disease. J Urol 1962; 88: 71-76
- 127 Kato GJ, Gladwin MT, Steinberg MH. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 2007; 21 (01) 37-47
- 128 Gonzales J, Holbert K, Czysz K, George J, Fernandes C, Fraidenburg DR. Hemin-induced endothelial dysfunction and endothelial to mesenchymal transition in the pathogenesis of pulmonary hypertension due to chronic hemolysis. Int J Mol Sci 2022; 23 (09) 4763
- 129 Good RB, Gilbane AJ, Trinder SL. et al. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am J Pathol 2015; 185 (07) 1850-1858
- 130 Pohl J, Bruhn HD, Christophers E. Thrombin and fibrin-induced growth of fibroblasts: role in wound repair and thrombus organization. Klin Wochenschr 1979; 57 (06) 273-277
- 131 Arumugam PI, Mullins ES, Shanmukhappa SK. et al. Genetic diminution of circulating prothrombin ameliorates multiorgan pathologies in sickle cell disease mice. Blood 2015; 126 (15) 1844-1855
- 132 Ataga KI, Saraf SL, Derebail VK. The nephropathy of sickle cell trait and sickle cell disease. Nat Rev Nephrol 2022; 18 (06) 361-377
- 133 Elfenbein IB, Patchefsky A, Schwartz W, Weinstein AG. Pathology of the glomerulus in sickle cell anemia with and without nephrotic syndrome. Am J Pathol 1974; 77 (03) 357-374
- 134 Maigne G, Ferlicot S, Galacteros F. et al. Glomerular lesions in patients with sickle cell disease. Medicine (Baltimore) 2010; 89 (01) 18-27
- 135 Zahr RS, Yee ME, Weaver J. et al. Kidney biopsy findings in children with sickle cell disease: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol 2019; 34 (08) 1435-1445
- 136 Day TG, Drasar ER, Fulford T, Sharpe CC, Thein SL. Association between hemolysis and albuminuria in adults with sickle cell anemia. Haematologica 2012; 97 (02) 201-205
- 137 Haymann JP, Stankovic K, Levy P. et al. Glomerular hyperfiltration in adult sickle cell anemia: a frequent hemolysis associated feature. Clin J Am Soc Nephrol 2010; 5 (05) 756-761
- 138 Ofori-Acquah SF, Hazra R, Orikogbo OO. et al; SickleGenAfrica Network. Hemopexin deficiency promotes acute kidney injury in sickle cell disease. Blood 2020; 135 (13) 1044-1048
- 139 Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15 (11) 671-692
- 140 Merle NS, Grunenwald A, Rajaratnam H. et al. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI Insight 2018; 3 (12) e96910
- 141 Merle NS, Leon J, Poillerat V. et al. Circulating FH protects kidneys from tubular injury during systemic hemolysis. Front Immunol 2020; 11: 1772
- 142 Ramadas N, Lowder K, Dutton J. et al. Biased agonism of protease-activated receptor-1 regulates thromboinflammation in murine sickle cell disease. Blood Adv 2024; 8 (12) 3272-3283
- 143 Chen Q, Hazra R, Crosby D. et al. Heme-induced loss of renovascular endothelial protein C receptor promotes chronic kidney disease in sickle mice. Blood 2024; 144 (05) 552-564
- 144 Ramadas N, Sparkenbaugh EM. The APC-EPCR-PAR1 axis in sickle cell disease. Front Med (Lausanne) 2023; 10: 1141020
- 145 Sparkenbaugh EM. EPCR shedding light on sickle nephropathy. Blood 2024; 144 (05) 472-474
- 146 Yang L, Huang S, Zhang Z, Liu Z, Zhang L. Roles and applications of red blood cell-derived extracellular vesicles in health and diseases. Int J Mol Sci 2022; 23 (11) 5927
- 147 Lamarre Y, Nader E, Connes P, Romana M, Garnier Y. Extracellular vesicles in sickle cell disease: a promising tool. Bioengineering (Basel) 2022; 9 (09) 439
- 148 Vajen T, Mause SF, Koenen RR. Microvesicles from platelets: novel drivers of vascular inflammation. Thromb Haemost 2015; 114 (02) 228-236
- 149 Rai P, Ataga KI. Using disease-modifying therapies in sickle cell disease. Hematology (Am Soc Hematol Educ Program) 2023; 2023 (01) 519-531
- 150 Nickel KF, Long AT, Fuchs TA, Butler LM, Renné T. Factor XII as a therapeutic target in thromboembolic and inflammatory diseases. Arterioscler Thromb Vasc Biol 2017; 37 (01) 13-20
- 151 Xu P, Zhang Y, Guo J. et al. A single-domain antibody targeting factor XII inhibits both thrombosis and inflammation. Nat Commun 2024; 15 (01) 7898
- 152 Esmaeili A, Alini M, Baghaban Eslaminejad M, Hosseini S. Engineering strategies for customizing extracellular vesicle uptake in a therapeutic context. Stem Cell Res Ther 2022; 13 (01) 129
- 153 Morelli AE, Larregina AT, Shufesky WJ. et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004; 104 (10) 3257-3266
- 154 Ostrowski M, Carmo NB, Krumeich S. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010; 12 (01) 19-30 , 1–13
- 155 Biagiotti S, Abbas F, Montanari M. et al. Extracellular vesicles as new players in drug delivery: a focus on red blood cells-derived EVs. Pharmaceutics 2023; 15 (02) 365
- 156 Ma SR, Xia HF, Gong P, Yu ZL. Red blood cell-derived extracellular vesicles: an overview of current research progress, challenges, and opportunities. Biomedicines 2023; 11 (10) 2798