RSS-Feed abonnieren
DOI: 10.1055/a-2664-8170
Hepatic Apolipoprotein M Suppresses Hepatocyte Secretion of Prothrombin by Upregulating Arid5B
Funding This work was supported by JSPS KAKENHI Grant Number 16H06236, Grant Number 20H03573 (M.K.), Grant Number 24K02358 (M.K.), and by the SENSHIN Medical Research Foundation (M.K.).

Abstract
Background
Apolipoprotein M (ApoM) is a minor apolipoprotein bound to HDL, which carries sphingosine 1-phosphate (S1P), a potent lipid mediator.
Material and Methods
Since HDL has been proposed to possess pleiotropic effects, including an anti-thrombotic effect, we investigated the association between ApoM and coagulopathy.
Results
ApoM overexpression suppressed and ApoM knockout accelerated the decrease in platelet counts, but ApoM overexpression accelerated and ApoM knockout suppressed the prolongation of prothrombin time and activated partial thromboplastin time in a murine lipopolysaccharide-induced model of sepsis. ApoM decreased the plasma/culture-medium prothrombin levels and increased the hepatic/cellular prothrombin levels in mice and HepG2 cells, a hepatocyte cell line. S1P receptor knockdown did not inhibit prothrombin secretion by HepG2 cells.
Conclusion
An RNA-sequence-based approach suggested that Arid5B was involved in these effects of ApoM. Arid5B knockdown increased the culture-medium prothrombin level but decreased cellular prothrombin level. ApoM upregulated Arid5B, and Arid5B knockdown antagonized the inhibitory effect of ApoM on prothrombin secretion. Hepatic ApoM suppresses hepatocyte prothrombin secretion independent of S1P receptors, by upregulation of Arid5B.
Data Availability Statement
All relevant data are presented within the paper, and the datasets generated or analyzed during this study will be made available upon reasonable request.
Publikationsverlauf
Eingereicht: 06. Januar 2024
Angenommen: 23. Juli 2025
Accepted Manuscript online:
24. Juli 2025
Artikel online veröffentlicht:
04. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Wendelboe AM, Raskob GE. Global burden of thrombosis: epidemiologic aspects. Circ Res 2016; 118 (09) 1340-1347
- 2 Harris HW, Johnson JA, Wigmore SJ. Endogenous lipoproteins impact the response to endotoxin in humans. Crit Care Med 2002; 30 (01) 23-31
- 3 Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res 2006; 98 (11) 1352-1364
- 4 Brewer Jr HB. Clinical review: the evolving role of HDL in the treatment of high-risk patients with cardiovascular disease. J Clin Endocrinol Metab 2011; 96 (05) 1246-1257
- 5 Annema W, von Eckardstein A, Kovanen PT. HDL and atherothrombotic vascular disease. Handb Exp Pharmacol 2015; 224: 369-403
- 6 Huang Y, Ge H, Wang X, Zhang X. Association between blood lipid levels and lower extremity deep venous thrombosis: a population-based cohort study. Clin Appl Thromb Hemost 2022 ;28:10760296221121282
- 7 Ma J, Du P, Qin J. et al. Incidence and risk factors predicting deep venous thrombosis of lower extremity following spinal fractures. Sci Rep 2021; 11 (01) 2441
- 8 Deguchi H, Pecheniuk NM, Elias DJ, Averell PM, Griffin JH. High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men. Circulation 2005; 112 (06) 893-899
- 9 Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW. Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation 2008; 117 (01) 93-102
- 10 Delluc A, Malécot JM, Kerspern H. et al. Lipid parameters, lipid lowering drugs and the risk of venous thromboembolism. Atherosclerosis 2012; 220 (01) 184-188
- 11 Morelli VM, Lijfering WM, Bos MHA, Rosendaal FR, Cannegieter SC. Lipid levels and risk of venous thrombosis: results from the MEGA-study. Eur J Epidemiol 2017; 32 (08) 669-681
- 12 Braekkan SK, Borch KH, Mathiesen EB, Njølstad I, Hansen JB. HDL-cholesterol and future risk of venous thromboembolism: the Tromsø Study. J Thromb Haemost 2009; 7 (08) 1428-1430
- 13 Cartier A, Hla T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science 2019; 366 (6463) eaar5551
- 14 Christoffersen C, Obinata H, Kumaraswamy SB. et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 2011; 108 (23) 9613-9618
- 15 Kurano M, Yatomi Y. Sphingosine 1-phosphate and atherosclerosis. J Atheroscler Thromb 2018; 25 (01) 16-26
- 16 Kurano M, Tsuneyama K, Morimoto Y. et al. Apolipoprotein M protects lipopolysaccharide-treated mice from death and organ injury. Thromb Haemost 2018; 118 (06) 1021-1035
- 17 Takahashi C, Kurano M, Nishikawa M. et al. Vehicle-dependent effects of sphingosine 1-phosphate on plasminogen activator inhibitor-1 expression. J Atheroscler Thromb 2017; 24 (09) 954-969
- 18 Memon AA, Sundquist J, Zöller B. et al. Apolipoprotein M and the risk of unprovoked recurrent venous thromboembolism. Thromb Res 2014; 133 (03) 322-326
- 19 Castillo MM, Yang Q, Zhan M. et al. Maintaining extraembryonic expression allows generation of mice with severe tissue factor pathway inhibitor deficiency. Blood Adv 2019; 3 (03) 489-498
- 20 Kurano M, Tsukamoto K, Ohkawa R. et al. Liver involvement in sphingosine 1-phosphate dynamism revealed by adenoviral hepatic overexpression of apolipoprotein M. Atherosclerosis 2013; 229 (01) 102-109
- 21 Kurano M, Hara M, Ikeda H, Tsukamoto K, Yatomi Y. Involvement of CETP (cholesteryl ester transfer protein) in the shift of sphingosine-1-phosphate among lipoproteins and in the modulation of its functions. Arterioscler Thromb Vasc Biol 2017; 37 (03) 506-514
- 22 Kurano M, Hara M, Tsuneyama K. et al. Induction of insulin secretion by apolipoprotein M, a carrier for sphingosine 1-phosphate. Biochim Biophys Acta 2014; 1841 (09) 1217-1226
- 23 Uranbileg B, Nishikawa T, Ikeda H. et al. Evidence suggests sphingosine 1-phosphate might be actively generated, degraded, and transported to extracellular spaces with increased S1P2 and S1P3 expression in colon cancer. Clin Colorectal Cancer 2018; 17 (02) e171-e182
- 24 Kurano M, Tsukamoto K, Shimizu T. et al. Protection against insulin resistance by apolipoprotein M/sphingosine-1-phosphate. Diabetes 2020; 69 (05) 867-881
- 25 Zhu B, Luo GH, Feng YH. et al. Apolipoprotein M protects against lipopolysaccharide-induced acute lung injury via sphingosine-1-phosphate signaling. Inflammation 2018; 41 (02) 643-653
- 26 Fan Y, Chen J, Liu D. et al. HDL-S1P protects endothelial function and reduces lung injury during sepsis in vivo and in vitro. Int J Biochem Cell Biol 2020; 126: 105819
- 27 Li Y, Zhou J, Qiu J. et al. Berberine reduces gut-vascular barrier permeability via modulation of ApoM/S1P pathway in a model of polymicrobial sepsis. Life Sci 2020; 261: 118460
- 28 Kurano M, Uranbileg B, Yatomi Y. Apolipoprotein M bound sphingosine 1-phosphate suppresses NETosis through activating S1P1 and S1P4. Biomed Pharmacother 2023; 166: 115400
- 29 Bancroft JD, McDowell SA, Degen SJ. The human prothrombin gene: transcriptional regulation in HepG2 cells. Biochemistry 1992; 31 (49) 12469-12476
- 30 Ceelie H, Spaargaren-Van Riel CC, De Jong M, Bertina RM, Vos HL. Functional characterization of transcription factor binding sites for HNF1-alpha, HNF3-beta (FOXA2), HNF4-alpha, Sp1 and Sp3 in the human prothrombin gene enhancer. J Thromb Haemost 2003; 1 (08) 1688-1698
- 31 Wang P, Deng Y, Yan X. et al. The role of ARID5B in acute lymphoblastic leukemia and beyond. Front Genet 2020; 11: 598
- 32 Goodings C, Zhao X, McKinney-Freeman S, Zhang H, Yang JJ. ARID5B influences B-cell development and function in mouse. Haematologica 2023; 108 (02) 502-512
- 33 Yamakawa T, Whitson RH, Li SL, Itakura K. Modulator recognition factor-2 is required for adipogenesis in mouse embryo fibroblasts and 3T3-L1 cells. Mol Endocrinol 2008; 22 (02) 441-453
- 34 Murray J, Ehsani A, Najjar L, Zhang G, Itakura K. Muscle-specific deletion of Arid5b causes metabolic changes in skeletal muscle that affect adipose tissue and liver. Front Endocrinol (Lausanne) 2023; 13: 1083311
- 35 Whitson Jr RH, Li SL, Zhang G, Larson GP, Itakura K. Mice with Fabp4-Cre ablation of Arid5b are resistant to diet-induced obesity and hepatic steatosis. Mol Cell Endocrinol 2021; 528: 111246
- 36 Wang G, Watanabe M, Imai Y. et al. Associations of variations in the MRF2/ARID5B gene with susceptibility to type 2 diabetes in the Japanese population. J Hum Genet 2012; 57 (11) 727-733
- 37 Svyatova G, Boranbayeva R, Berezina G, Manzhuova L, Murtazaliyeva A. Genes of predisposition to childhood beta-cell acute lymphoblastic leukemia in the Kazakh population. Asian Pac J Cancer Prev 2023; 24 (08) 2653-2666
- 38 Mosaad YM, Hammad A, AlHarrass MF. et al. ARID5B rs10821936 and rs10994982 gene polymorphism and susceptibility to juvenile systemic lupus erythematosus and lupus nephritis. Lupus 2021; 30 (08) 1226-1232
- 39 Wang G, Watanabe M, Imai Y. et al. Genetic variations of Mrf-2/ARID5B confer risk of coronary atherosclerosis in the Japanese population. Int Heart J 2008; 49 (03) 313-327
- 40 Xu N, Dahlbäck B. A novel human apolipoprotein (apoM). J Biol Chem 1999; 274 (44) 31286-31290
- 41 Kurano M, Tsukamoto K, Shimizu T, Hara M, Yatomi Y. Apolipoprotein M/sphingosine 1-phosphate protects against diabetic nephropathy. Transl Res 2023; 258: 16-34
- 42 Hait NC, Allegood J, Maceyka M. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 2009; 325 (5945) 1254-1257
- 43 Uranbileg B, Kurano M, Kano K. et al. Sphingosine 1-phosphate lyase facilitates cancer progression through converting sphingolipids to glycerophospholipids. Clin Transl Med 2022; 12 (09) e1056
- 44 Luo G, Shi Y, Zhang J. et al. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPARβ/δ in HepG2 cells. Biochem Biophys Res Commun 2014; 445 (01) 203-207
- 45 Kurano M, Ikeda H, Iso-O N, Hara M, Tsukamoto K, Yatomi Y. Regulation of the metabolism of apolipoprotein M and sphingosine 1-phosphate by hepatic PPARγ activity. Biochem J 2018; 475 (12) 2009-2024
- 46 Di D, Wang Z, Liu Y. et al. ABCA1 upregulating apolipoproein M expression mediates via the RXR/LXR pathway in HepG2 cells. Biochem Biophys Res Commun 2012; 421 (01) 152-156
- 47 Zhu C, Di D, Zhang X. et al. TO901317 regulating apolipoprotein M expression mediates via the farnesoid X receptor pathway in Caco-2 cells. Lipids Health Dis 2011; 10: 199
- 48 Mosialou I, Zannis VI, Kardassis D. Regulation of human apolipoprotein m gene expression by orphan and ligand-dependent nuclear receptors. J Biol Chem 2010; 285 (40) 30719-30730
- 49 Kurano M, Hara M, Nojiri T, Ikeda H, Tsukamoto K, Yatomi Y. Resveratrol exerts a biphasic effect on apolipoprotein M. Br J Pharmacol 2016; 173 (01) 222-233
- 50 Liu X, Zhou H, Hu Z. Resveratrol attenuates chronic pulmonary embolism-related endothelial cell injury by modulating oxidative stress, inflammation, and autophagy. Clinics (Sao Paulo) 2022; 77: 100083
- 51 Fei J, Qin X, Ma H. et al. Resveratrol ameliorates deep vein thrombosis-induced inflammatory response through inhibiting HIF-1α/NLRP3 pathway. Inflammation 2022; 45 (06) 2268-2279