Subscribe to RSS

DOI: 10.1055/a-2675-2564
Heterogeneity of Lung Phagocytes and Clearance of Apoptotic Cells in Lung Injury and Repair
Authors
Funding None.

Abstract
Poor repair following lung injury is a significant cause of morbidity and mortality. Clearance of apoptotic cells, termed efferocytosis, has emerged as a key process that can influence repair outcomes and facilitate successful repair. Although prior literature has focused on efferocytosis by macrophages, evidence is emerging that nonprofessional phagocytes, including fibroblasts and epithelial cells, may play critical roles in efferocytosis during tissue repair. This review summarizes existing knowledge of different lung phagocytes that can participate in efferocytosis, evidence linking efferocytosis to lung health and tissue repair, and discusses factors that may inhibit or redirect efferocytosis to promote mis-repair. A deeper understanding of how the integrated landscape of lung phagocytes participates in efferocytosis will likely provide significant insight into repair and mis-repair processes.
Keywords
efferocytosis - apoptotic cell clearance - lung - macrophage - nonprofessional phagocyte - repairPublication History
Article published online:
04 September 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Grigg JM, Savill JS, Sarraf C, Haslett C, Silverman M. Neutrophil apoptosis and clearance from neonatal lungs. Lancet 1991; 338 (8769): 720-722
- 2 Bardales RH, Xie SS, Schaefer RF, Hsu SM. Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am J Pathol 1996; 149 (03) 845-852
- 3 Albertine KH, Soulier MF, Wang Z. et al. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol 2002; 161 (05) 1783-1796
- 4 Hagimoto N, Kuwano K, Nomoto Y, Kunitake R, Hara N. Apoptosis and expression of Fas/Fas ligand mRNA in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 1997; 16 (01) 91-101
- 5 Rai NK, Tripathi K, Sharma D, Shukla VK. Apoptosis: a basic physiologic process in wound healing. Int J Low Extrem Wounds 2005; 4 (03) 138-144
- 6 Park W, Wei S, Kim BS. et al. Diversity and complexity of cell death: a historical review. Exp Mol Med 2023; 55 (08) 1573-1594
- 7 Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 2021; 18 (05) 1106-1121
- 8 Medina CB, Mehrotra P, Arandjelovic S. et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020; 580 (7801): 130-135
- 9 Weigert A, Johann AM, von Knethen A, Schmidt H, Geisslinger G, Brüne B. Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood 2006; 108 (05) 1635-1642
- 10 A-Gonzalez N, Quintana JA, García-Silva S. et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. J Exp Med 2017; 214 (05) 1281-1296
- 11 Schilperoort M, Ngai D, Sukka SR, Avrampou K, Shi H, Tabas I. The role of efferocytosis-fueled macrophage metabolism in the resolution of inflammation. Immunol Rev 2023; 319 (01) 65-80
- 12 Moon B, Yang S, Moon H, Lee J, Park D. After cell death: the molecular machinery of efferocytosis. Exp Mol Med 2023; 55 (08) 1644-1651
- 13 Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020; 21 (07) 398-414
- 14 Grootveld AK, Kyaw W, Panova V. et al. Apoptotic cell fragments locally activate tingible body macrophages in the germinal center. Cell 2023; 186 (06) 1144-1161.e18
- 15 Barth ND, Marwick JA, Vendrell M, Rossi AG, Dransfield I. The “phagocytic synapse” and clearance of apoptotic cells. Front Immunol 2017; 8: 1708
- 16 Kelley SM, Ravichandran KS. Putting the brakes on phagocytosis: “don't-eat-me” signaling in physiology and disease. EMBO Rep 2021; 22 (06) e52564
- 17 Freeman S, Grinstein S. Promoters and antagonists of phagocytosis: a plastic and tunable response. Annu Rev Cell Dev Biol 2021; 37: 89-114
- 18 Kuo JC, Paszek MJ. Glycocalyx curving the membrane: forces emerging from the cell exterior. Annu Rev Cell Dev Biol 2021; 37: 257-283
- 19 Morris RG, Hargreaves AD, Duvall E, Wyllie AH. Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Pathol 1984; 115 (03) 426-436
- 20 Franz S, Frey B, Sheriff A. et al. Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis. Cytometry A 2006; 69 (04) 230-239
- 21 Meesmann HM, Fehr EM, Kierschke S. et al. Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J Cell Sci 2010; 123 (Pt 19): 3347-3356
- 22 Franz S, Herrmann K, Fürnrohr BG. et al. After shrinkage apoptotic cells expose internal membrane-derived epitopes on their plasma membranes. Cell Death Differ 2007; 14 (04) 733-742
- 23 Imbert PRC, Saric A, Pedram K, Bertozzi CR, Grinstein S, Freeman SA. An acquired and endogenous glycocalyx forms a bidirectional “don't eat” and “don't eat me” barrier to phagocytosis. Curr Biol 2021; 31 (01) 77-89.e5
- 24 Drexhage LZ, Zhang S, Dupont M. et al. Apoptosis-mediated ADAM10 activation removes a mucin barrier promoting T cell efferocytosis. Nat Commun 2024; 15 (01) 541
- 25 Le T, Ferling I, Qiu L. et al. Redistribution of the glycocalyx exposes phagocytic determinants on apoptotic cells. Dev Cell 2024; 59 (07) 853-868.e7
- 26 Meegan JE, Rizzo AN, Schmidt EP, Bastarache JA. Cellular mechanisms of lung injury: current perspectives. Clin Chest Med 2024; 45 (04) 821-833
- 27 Seeberg JC, Loibl M, Moser F. et al. Non-professional phagocytosis: a general feature of normal tissue cells. Sci Rep 2019; 9 (01) 11875
- 28 Bosurgi L, Cao YG, Cabeza-Cabrerizo M. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 2017; 356 (6342): 1072-1076
- 29 Rydell-Törmänen K, Uller L, Erjefält JS. Neutrophil cannibalism–a back up when the macrophage clearance system is insufficient. Respir Res 2006; 7 (01) 143
- 30 Ramos C, Oehler R. Clearance of apoptotic cells by neutrophils in inflammation and cancer. Cell Death Discov 2024; 10 (01) 26
- 31 Moore PK, Anderson KC, McManus SA. et al. Single-cell RNA sequencing reveals unique monocyte-derived interstitial macrophage subsets during lipopolysaccharide-induced acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2023; 324 (04) L536-L549
- 32 Dick SA, Wong A, Hamidzada H. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci Immunol 2022; 7 (67) eabf7777
- 33 Joshi N, Watanabe S, Verma R. et al. A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. Eur Respir J 2020; 55 (01) 1900646
- 34 Chakarov S, Lim HY, Tan L. et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 2019; 363 (6432): eaau0964
- 35 Hume PS, Gibbings SL, Jakubzick CV. et al. Localization of macrophages in the human lung via design-based stereology. Am J Respir Crit Care Med 2020; 201 (10) 1209-1217
- 36 Petit M, Weber-Delacroix E, Lanthiez F. et al. Visualizing the spatial organization of monocytes, interstitial macrophages, and tissue-specific macrophages in situ. Cell Rep 2024; 43 (10) 114847
- 37 Mould KJ, Moore CM, McManus SA. et al. Airspace macrophages and monocytes exist in transcriptionally distinct subsets in healthy adults. Am J Respir Crit Care Med 2021; 203 (08) 946-956
- 38 Mould KJ, Barthel L, Mohning MP. et al. Cell origin dictates programming of resident versus recruited macrophages during acute lung injury. Am J Respir Cell Mol Biol 2017; 57 (03) 294-306
- 39 Gibbings SL, Goyal R, Desch AN. et al. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 2015; 126 (11) 1357-1366
- 40 King EM, Zhao Y, Moore CM. et al. Gpnmb and Spp1 mark a conserved macrophage injury response masking fibrosis-specific programming in the lung. JCI Insight 2024; 9 (24) e182700
- 41 Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity 2022; 55 (09) 1564-1580
- 42 Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans. Immunology 2020; 160 (02) 126-138
- 43 Hou F, Xiao K, Tang L, Xie L. Diversity of macrophages in lung homeostasis and diseases. Front Immunol 2021; 12: 753940
- 44 Hou F, Wang H, Zheng K. et al. Distinct transcriptional and functional differences of lung resident and monocyte-derived alveolar macrophages during the recovery period of acute lung injury. Immune Netw 2023; 23 (03) e24
- 45 Han W, Tanjore H, Liu Y. et al. Identification and characterization of alveolar and recruited lung macrophages during acute lung inflammation. J Immunol 2023; 210 (11) 1827-1836
- 46 Liang J, Jung Y, Tighe RM. et al. A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 302 (09) L933-L940
- 47 Janssen WJ, McPhillips KA, Dickinson MG. et al. Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am J Respir Crit Care Med 2008; 178 (02) 158-167
- 48 Guttenberg MA, Vose AT, Birukova A. et al. Tissue-resident alveolar macrophages reduce ozone-induced inflammation via MerTK-mediated efferocytosis. Am J Respir Cell Mol Biol 2024; 70 (06) 493-506
- 49 Chakraborty S, Singh A, Wang L. et al. Trained immunity of alveolar macrophages enhances injury resolution via KLF4-MERTK-mediated efferocytosis. J Exp Med 2023; 220 (11) e20221388
- 50 Nepal S, Tiruppathi C, Tsukasaki Y. et al. STAT6 induces expression of Gas6 in macrophages to clear apoptotic neutrophils and resolve inflammation. Proc Natl Acad Sci U S A 2019; 116 (33) 16513-16518
- 51 Gibbings SL, Thomas SM, Atif SM. et al. Three unique interstitial macrophages in the murine lung at steady state. Am J Respir Cell Mol Biol 2017; 57 (01) 66-76
- 52 Schyns J, Bai Q, Ruscitti C. et al. Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung. Nat Commun 2019; 10 (01) 3964
- 53 Zuttion MSSR, Parimon T, Yao C. et al. Interstitial macrophages mediate efferocytosis of alveolar epithelium during influenza infection. Am J Respir Cell Mol Biol 2024; 70 (03) 159-164
- 54 Plosa EJ, Benjamin JT, Sucre JM. et al. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 2020; 5 (02) e129259
- 55 Hu B, Sonstein J, Christensen PJ, Punturieri A, Curtis JL. Deficient in vitro and in vivo phagocytosis of apoptotic T cells by resident murine alveolar macrophages. J Immunol 2000; 165 (04) 2124-2133
- 56 McCubbrey AL, Nelson JD, Stolberg VR. et al. MicroRNA-34a negatively regulates efferocytosis by tissue macrophages in part via SIRT1. J Immunol 2016; 196 (03) 1366-1375
- 57 Bee GCW, Lokken-Toyli KL, Yeung ST. et al. Age-dependent differences in efferocytosis determine the outcome of opsonophagocytic protection from invasive pathogens. Immunity 2023; 56 (06) 1255-1268.e5
- 58 Stolberg VR, McCubbrey AL, Freeman CM. et al. Glucocorticoid-augmented efferocytosis inhibits pulmonary pneumococcal clearance in mice by reducing alveolar macrophage bactericidal function. J Immunol 2015; 195 (01) 174-184
- 59 Medeiros AI, Serezani CH, Lee SP, Peters-Golden M. Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling. J Exp Med 2009; 206 (01) 61-68
- 60 Czuczman MA, Fattouh R, van Rijn JM. et al. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread. Nature 2014; 509 (7499): 230-234
- 61 Gao P, Zhou L, Wu J. et al. Riding apoptotic bodies for cell-cell transmission by African swine fever virus. Proc Natl Acad Sci U S A 2023; 120 (48) e2309506120
- 62 Mohammad-Rafiei F, Moadab F, Mahmoudi A, Navashenaq JG, Gheibihayat SM. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol 2023; 205 (12) 370
- 63 FitzGerald ES, Luz NF, Jamieson AM. Competitive cell death interactions in pulmonary infection: host modulation versus pathogen manipulation. Front Immunol 2020; 11: 814
- 64 Blander JM. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 2014; 14 (09) 601-618
- 65 Feng J, Pucella JN, Jang G. et al. Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity 2022; 55 (03) 405-422.e11
- 66 Patel VI, Metcalf JP. Airway macrophage and dendritic cell subsets in the resting human lung. Crit Rev Immunol 2018; 38 (04) 303-331
- 67 Desch AN, Henson PM, Jakubzick CV. Pulmonary dendritic cell development and antigen acquisition. Immunol Res 2013; 55 (1–3): 178-186
- 68 Albert ML, Pearce SF, Francisco LM. et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188 (07) 1359-1368
- 69 Dalgaard J, Beckstrøm KJ, Jahnsen FL, Brinchmann JE. Differential capability for phagocytosis of apoptotic and necrotic leukemia cells by human peripheral blood dendritic cell subsets. J Leukoc Biol 2005; 77 (05) 689-698
- 70 Iyoda T, Shimoyama S, Liu K. et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med 2002; 195 (10) 1289-1302
- 71 Desch AN, Randolph GJ, Murphy K. et al. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J Exp Med 2011; 208 (09) 1789-1797
- 72 Subramanian M, Hayes CD, Thome JJ. et al. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J Clin Invest 2014; 124 (03) 1296-1308
- 73 Caronni N, Piperno GM, Simoncello F. et al. TIM4 expression by dendritic cells mediates uptake of tumor-associated antigens and anti-tumor responses. Nat Commun 2021; 12 (01) 2237
- 74 Tzelepis F, Verway M, Daoud J. et al. Annexin1 regulates DC efferocytosis and cross-presentation during mycobacterium tuberculosis infection. J Clin Invest 2015; 125 (02) 752-768
- 75 Seitz HM, Camenisch TD, Lemke G, Earp HS, Matsushima GK. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J Immunol 2007; 178 (09) 5635-5642
- 76 Ruben JM, García-Romo GS, Breman E. et al. Human plasmacytoid dendritic cells acquire phagocytic capacity by TLR9 ligation in the presence of soluble factors produced by renal epithelial cells. Kidney Int 2018; 93 (02) 355-364
- 77 Penteado LA, Dejani NN, Verdan FF. et al. Distinctive role of efferocytosis in dendritic cell maturation and migration in sterile or infectious conditions. Immunology 2017; 151 (03) 304-313
- 78 Semmrich M, Plantinga M, Svensson-Frej M. et al. Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses. Mucosal Immunol 2012; 5 (02) 150-160
- 79 Ma Y, Jiang T, Zhu X. et al. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15: 1415573
- 80 Wang F, Ting C, Riemondy KA. et al. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J Clin Invest 2023; 133 (22) e165612
- 81 Hewitt RJ, Lloyd CM. Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol 2021; 21 (06) 347-362
- 82 Walsh GM, Sexton DW, Blaylock MG, Convery CM. Resting and cytokine-stimulated human small airway epithelial cells recognize and engulf apoptotic eosinophils. Blood 1999; 94 (08) 2827-2835
- 83 Sexton DW, Al-Rabia M, Blaylock MG, Walsh GM. Phagocytosis of apoptotic eosinophils but not neutrophils by bronchial epithelial cells. Clin Exp Allergy 2004; 34 (10) 1514-1524
- 84 Shibata T, Habiel DM, Coelho AL, Kunkel SL, Lukacs NW, Hogaboam CM. Axl receptor blockade ameliorates pulmonary pathology resulting from primary viral infection and viral exacerbation of asthma. J Immunol 2014; 192 (08) 3569-3581
- 85 Nguyen KQ, Tsou WI, Calarese DA. et al. Overexpression of MERTK receptor tyrosine kinase in epithelial cancer cells drives efferocytosis in a gain-of-function capacity. J Biol Chem 2014; 289 (37) 25737-25749
- 86 Juncadella IJ, Kadl A, Sharma AK. et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 2013; 493 (7433): 547-551
- 87 Schupp JC, Adams TS, Cosme Jr C. et al. Integrated single-cell atlas of endothelial cells of the human lung. Circulation 2021; 144 (04) 286-302
- 88 Gillich A, Zhang F, Farmer CG. et al. Capillary cell-type specialization in the alveolus. Nature 2020; 586 (7831): 785-789
- 89 Li Y, Wittchen ES, Monaghan-Benson E. et al. The role of endothelial MERTK during the inflammatory response in lungs. PLoS One 2019; 14 (12) e0225051
- 90 Kirsch T, Woywodt A, Beese M. et al. Engulfment of apoptotic cells by microvascular endothelial cells induces proinflammatory responses. Blood 2007; 109 (07) 2854-2862
- 91 Deng HJ, Xu YH, Wu K. et al. The sentinel against brain injury post-subarachnoid hemorrhage: efferocytosis of erythrocytes by leptomeningeal lymphatic endothelial cells. Theranostics 2025; 15 (06) 2487-2509
- 92 Wu J, Liu S, Banerjee O, Shi H, Xue B, Ding Z. Disturbed flow impairs MerTK-mediated efferocytosis in aortic endothelial cells during atherosclerosis. Theranostics 2024; 14 (06) 2427-2441
- 93 Liu S, Wu J, Stolarz A. et al. PCSK9 attenuates efferocytosis in endothelial cells and promotes vascular aging. Theranostics 2023; 13 (09) 2914-2929
- 94 Catan A, Turpin C, Diotel N. et al. Aging and glycation promote erythrocyte phagocytosis by human endothelial cells: potential impact in atherothrombosis under diabetic conditions. Atherosclerosis 2019; 291: 87-98
- 95 Turpin C, Apalama ML, Carnero B. et al. Impact of enhanced phagocytosis of glycated erythrocytes on human endothelial cell functions. Cells 2022; 11 (14) 2200
- 96 Tsukui T, Sun KH, Wetter JB. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun 2020; 11 (01) 1920
- 97 Melms JC, Biermann J, Huang H. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 2021; 595 (7865): 114-119
- 98 Mukhatayev Z, Adilbayeva A, Kunz J. CTHRC1: an emerging hallmark of pathogenic fibroblasts in lung fibrosis. Cells 2024; 13 (11) 946
- 99 Espindola MS, Habiel DM, Narayanan R. et al. Targeting of TAM receptors ameliorates fibrotic mechanisms in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2018; 197 (11) 1443-1456
- 100 Zhao X, Li Y, Yang S. et al. Orderly regulation of macrophages and fibroblasts by Axl in bleomycin-induced pulmonary fibrosis in mice. J Cell Mol Med 2025; 29 (01) e70321
- 101 Geng K, Kumar S, Kimani SG. et al. Requirement of gamma-carboxyglutamic acid modification and phosphatidylserine binding for the activation of Tyro3, Axl, and Mertk receptors by growth arrest-specific 6. Front Immunol 2017; 8: 1521
- 102 Justynski O, Bridges K, Krause W. et al. Apoptosis recognition receptors regulate skin tissue repair in mice. eLife 2023; 12: 12
- 103 Nakaya M, Watari K, Tajima M. et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest 2017; 127 (01) 383-401
- 104 Doran AC, Yurdagul Jr A, Tabas I. Efferocytosis in health and disease. Nat Rev Immunol 2020; 20 (04) 254-267
- 105 Kawano M, Nagata S. Efferocytosis and autoimmune disease. Int Immunol 2018; 30 (12) 551-558
- 106 Morioka S, Maueröder C, Ravichandran KS. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 2019; 50 (05) 1149-1162
- 107 Aitcheson SM, Frentiu FD, Hurn SE, Edwards K, Murray RZ. Skin wound healing: normal macrophage function and macrophage dysfunction in diabetic wounds. Molecules 2021; 26 (16) 4917
- 108 Hey J, Paulsen M, Toth R. et al. Epigenetic reprogramming of airway macrophages promotes polarization and inflammation in muco-obstructive lung disease. Nat Commun 2021; 12 (01) 6520
- 109 Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme. J Immunol 2005; 175 (06) 4009-4016
- 110 McCubbrey AL, Curtis JL. Efferocytosis and lung disease. Chest 2013; 143 (06) 1750-1757
- 111 Zheng W, Zhou Z, Guo X. et al. Efferocytosis and respiratory disease. Int J Mol Sci 2023; 24 (19) 14871
- 112 Dehle FC, Mukaro VR, Jurisevic C. et al. Defective lung macrophage function in lung cancer ± chronic obstructive pulmonary disease (COPD/emphysema)-mediated by cancer cell production of PGE2?. PLoS One 2013; 8 (04) e61573
- 113 Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol 2003; 81 (04) 289-296
- 114 Hodge S, Hodge G, Holmes M, Reynolds PN. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J 2005; 25 (03) 447-454
- 115 Makris D, Vrekoussis T, Izoldi M. et al. Increased apoptosis of neutrophils in induced sputum of COPD patients. Respir Med 2009; 103 (08) 1130-1135
- 116 Eltboli O, Bafadhel M, Hollins F. et al. COPD exacerbation severity and frequency is associated with impaired macrophage efferocytosis of eosinophils. BMC Pulm Med 2014; 14: 112
- 117 Yoshida S, Minematsu N, Chubachi S. et al. Annexin V decreases PS-mediated macrophage efferocytosis and deteriorates elastase-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol 2012; 303 (10) L852-L860
- 118 Erriah M, Pabreja K, Fricker M. et al. Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir Res 2019; 20 (01) 1
- 119 Felton JM, Lucas CD, Dorward DA. et al. Mer-mediated eosinophil efferocytosis regulates resolution of allergic airway inflammation. J Allergy Clin Immunol 2018; 142 (06) 1884-1893.e6
- 120 Miki H, Pei H, Gracias DT, Linden J, Croft M. Clearance of apoptotic cells by lung alveolar macrophages prevents development of house dust mite-induced asthmatic lung inflammation. J Allergy Clin Immunol 2021; 147 (03) 1087-1092.e3
- 121 Grabiec AM, Denny N, Doherty JA. et al. Diminished airway macrophage expression of the Axl receptor tyrosine kinase is associated with defective efferocytosis in asthma. J Allergy Clin Immunol 2017; 140 (04) 1144-1146.e4
- 122 Wan J, Cao Y, Abdelaziz MH. et al. Downregulated Rac1 promotes apoptosis and inhibits the clearance of apoptotic cells in airway epithelial cells, which may be associated with airway hyper-responsiveness in asthma. Scand J Immunol 2019; 89 (05) e12752
- 123 Simpson JL, Gibson PG, Yang IA. et al; AMAZES Study Research Group. Impaired macrophage phagocytosis in non-eosinophilic asthma. Clin Exp Allergy 2013; 43 (01) 29-35
- 124 Vandivier RW, Richens TR, Horstmann SA. et al. Dysfunctional cystic fibrosis transmembrane conductance regulator inhibits phagocytosis of apoptotic cells with proinflammatory consequences. Am J Physiol Lung Cell Mol Physiol 2009; 297 (04) L677-L686
- 125 Vandivier RW, Fadok VA, Hoffmann PR. et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 2002; 109 (05) 661-670
- 126 Liu G, Wang J, Park YJ. et al. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J Immunol 2008; 181 (06) 4240-4246
- 127 Mahida RY, Scott A, Parekh D. et al. Acute respiratory distress syndrome is associated with impaired alveolar macrophage efferocytosis. Eur Respir J 2021; 58 (03) 2100829
- 128 Grégoire M, Uhel F, Lesouhaitier M. et al. Impaired efferocytosis and neutrophil extracellular trap clearance by macrophages in ARDS. Eur Respir J 2018; 52 (02) 1702590
- 129 Jiang Y, Rosborough BR, Chen J. et al. Single cell RNA sequencing identifies an early monocyte gene signature in acute respiratory distress syndrome. JCI Insight 2020; 5 (13) e135678
- 130 Mahida RY, Lax S, Bassford CR. et al. Impaired alveolar macrophage 11β-hydroxysteroid dehydrogenase type 1 reductase activity contributes to increased pulmonary inflammation and mortality in sepsis-related ARDS. Front Immunol 2023; 14: 1159831
- 131 Salina ACG, Dos-Santos D, Rodrigues TS. et al. Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory functions and clearance of apoptotic cells. eLife 2022; 11: 11
- 132 Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002; 109 (01) 41-50
- 133 Proto JD, Doran AC, Gusarova G. et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 2018; 49 (04) 666-677.e6
- 134 Leroy V, Manual Kollareth DJ, Tu Z. et al. MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of ischemia/reperfusion injury after lung transplant. JCI Insight 2024; 9 (19) e179876
- 135 Madenspacher JH, Morrell ED, Gowdy KM. et al. Cholesterol 25-hydroxylase promotes efferocytosis and resolution of lung inflammation. JCI Insight 2020; 5 (11) e137189
- 136 Li F, Bai Y, Guan Z. et al. Dexmedetomidine attenuates sepsis-associated acute lung injury by regulating macrophage efferocytosis through the ROS/ADAM10/AXL pathway. Int Immunopharmacol 2024; 142 (Pt A): 112832
- 137 Jeong S, Yang K, Lee YJ, Park JW, Park EM, Kang JL. Gas6 induces AIM to suppress acute lung injury in mice by inhibiting NLRP3 inflammasome activation and inducing autophagy. Front Immunol 2025; 16: 1523166
- 138 Kim BM, Lee YJ, Choi YH, Park EM, Kang JL. Gas6 ameliorates inflammatory response and apoptosis in bleomycin-induced acute lung injury. Biomedicines 2021; 9 (11) 1674
- 139 Torchinsky MB, Garaude J, Martin AP, Blander JM. Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 2009; 458 (7234): 78-82
- 140 Salina ACG, de Aquino Penteado L, Dejani NN. et al. Different bacterial cargo in apoptotic cells drive distinct macrophage phenotypes. Apoptosis 2024; 29 (3–4): 321-330
- 141 Thannickal VJ, Horowitz JC. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 2006; 3 (04) 350-356
- 142 Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int J Mol Sci 2020; 21 (07) 2269
- 143 Kasam RK, Reddy GB, Jegga AG, Madala SK. Dysregulation of mesenchymal cell survival pathways in severe fibrotic lung disease: the effect of nintedanib therapy. Front Pharmacol 2019; 10: 532
- 144 Cooley JC, Javkhlan N, Wilson JA. et al. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight 2023; 8 (03) e163762
- 145 Morimoto K, Janssen WJ, Terada M. Defective efferocytosis by alveolar macrophages in IPF patients. Respir Med 2012; 106 (12) 1800-1803
- 146 She Y, Xu X, Yu Q, Yang X, He J, Tang XX. Elevated expression of macrophage MERTK exhibits profibrotic effects and results in defective regulation of efferocytosis function in pulmonary fibrosis. Respir Res 2023; 24 (01) 118
- 147 Kim DH, Kim HC, Im K. et al. Inhibition of AXL ameliorates pulmonary fibrosis via attenuation of M2 macrophage polarisation. Eur Respir J 2025; 65 (06) 2400615
- 148 Kim KK, Dotson MR, Agarwal M. et al. Efferocytosis of apoptotic alveolar epithelial cells is sufficient to initiate lung fibrosis. Cell Death Dis 2018; 9 (11) 1056
- 149 Lee YJ, Moon C, Lee SH. et al. Apoptotic cell instillation after bleomycin attenuates lung injury through hepatocyte growth factor induction. Eur Respir J 2012; 40 (02) 424-435
- 150 Kim MJ, Lee YJ, Yoon YS. et al. A STAT6 inhibitor AS1517499 reduces preventive effects of apoptotic cell instillation on bleomycin-induced lung fibrosis by suppressing PPARγ. Cell Physiol Biochem 2018; 45 (05) 1863-1877
- 151 Liebold I, Al Jawazneh A, Casar C. et al. Apoptotic cell identity induces distinct functional responses to IL-4 in efferocytic macrophages. Science 2024; 384 (6691): eabo7027
- 152 Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449: 116070
- 153 Ito H, Yamashita Y, Tanaka T. et al. Cigarette smoke induces endoplasmic reticulum stress and suppresses efferocytosis through the activation of RhoA. Sci Rep 2020; 10 (01) 12620
- 154 Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2007; 37 (06) 748-755
- 155 Noda N, Matsumoto K, Fukuyama S. et al. Cigarette smoke impairs phagocytosis of apoptotic neutrophils by alveolar macrophages via inhibition of the histone deacetylase/Rac/CD9 pathways. Int Immunol 2013; 25 (11) 643-650
- 156 Hodge S, Matthews G, Mukaro V. et al. Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am J Respir Cell Mol Biol 2011; 44 (05) 673-681
- 157 Subramaniam R, Mukherjee S, Chen H, Keshava S, Neuenschwander P, Shams H. Restoring cigarette smoke-induced impairment of efferocytosis in alveolar macrophages. Mucosal Immunol 2016; 9 (04) 873-883
- 158 Serban KA, Petrusca DN, Mikosz A. et al. Alpha-1 antitrypsin supplementation improves alveolar macrophages efferocytosis and phagocytosis following cigarette smoke exposure. PLoS One 2017; 12 (04) e0176073
- 159 Asare PF, Tran HB, Hurtado PR. et al. Inhibition of LC3-associated phagocytosis in COPD and in response to cigarette smoke. Ther Adv Respir Dis 2021; 15: 17 534666211039769
- 160 Hamon R, Homan CC, Tran HB. et al. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD. PLoS One 2014; 9 (10) e110056
- 161 Richens TR, Linderman DJ, Horstmann SA. et al. Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of RhoA. Am J Respir Crit Care Med 2009; 179 (11) 1011-1021
- 162 Minematsu N, Blumental-Perry A, Shapiro SD. Cigarette smoke inhibits engulfment of apoptotic cells by macrophages through inhibition of actin rearrangement. Am J Respir Cell Mol Biol 2011; 44 (04) 474-482
- 163 Hodge S, Tran HB, Hamon R. et al. Nonantibiotic macrolides restore airway macrophage phagocytic function with potential anti-inflammatory effects in chronic lung diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312 (05) L678-L687
- 164 Buford M, Lacher S, Slattery M. et al. A mouse model of wildfire smoke-induced health effects: sex differences in acute and sustained effects of inhalation exposures. Inhal Toxicol 2024; 36 (06) 367-377
- 165 Ween MP, Moshensky A, Thredgold L. et al. E-cigarettes and health risks: more to the flavor than just the name. Am J Physiol Lung Cell Mol Physiol 2021; 320 (04) L600-L614
- 166 Ween MP, Hamon R, Macowan MG, Thredgold L, Reynolds PN, Hodge SJ. Effects of E-cigarette E-liquid components on bronchial epithelial cells: demonstration of dysfunctional efferocytosis. Respirology 2020; 25 (06) 620-628
- 167 Serpa GL, Renton ND, Lee N, Crane MJ, Jamieson AM. Electronic nicotine delivery system aerosol-induced cell death and dysfunction in macrophages and lung epithelial cells. Am J Respir Cell Mol Biol 2020; 63 (03) 306-316
- 168 Yan W, Ma D, Liu Y. et al. PTX3 alleviates hard metal-induced acute lung injury through potentiating efferocytosis. Ecotoxicol Environ Saf 2022; 230: 113139
- 169 Ermakov YA, Kamaraju K, Dunina-Barkovskaya A. et al. High-affinity interactions of beryllium(2+) with phosphatidylserine result in a cross-linking effect reducing surface recognition of the lipid. Biochemistry 2017; 56 (40) 5457-5470
- 170 Lescoat A, Ballerie A, Lelong M. et al. Crystalline silica impairs efferocytosis abilities of human and mouse macrophages: implication for silica-associated systemic sclerosis. Front Immunol 2020; 11: 219
- 171 Rajasinghe LD, Chauhan PS, Wierenga KA. et al. Omega-3 docosahexaenoic acid (DHA) impedes silica-induced macrophage corpse accumulation by attenuating cell death and potentiating efferocytosis. Front Immunol 2020; 11: 2179
- 172 Zhang P, Lei X, Ou L. et al. Dioscin ameliorates silica-aggravated systemic lupus erythematosus via suppressing apoptosis and improving LC3-associated phagocytosis in MRL/lpr mice. Int Immunopharmacol 2023; 116: 109814
- 173 Guimarães-Pinto K, Leandro M, Corrêa A. et al. Differential regulation of lung homeostasis and silicosis by the TAM receptors MerTk and Axl. Front Immunol 2024; 15: 1380628
- 174 Atkin-Smith GK. Phagocytic clearance of apoptotic, necrotic, necroptotic and pyroptotic cells. Biochem Soc Trans 2021; 49 (02) 793-804