RSS-Feed abonnieren
DOI: 10.1055/a-2679-1709
Noninvasive Neuromonitoring in Children
Authors

Abstract
The term “neuromonitoring” denotes several methods that are used to monitor the state of the central nervous system. It is mainly used in intensive care units to mitigate the limitations of the clinical neurological examination, which arise in the context of critical illness, sedation, and neuromuscular blockade. In the pediatric intensive care units, neuromonitoring methods are increasingly used across all age groups. This article aims to give an overview of the four most frequently used technical noninvasive neuromonitoring modalities (electroencephalogram, near-infrared spectroscopy, transcranial Doppler, and automated pupillometry) and the evidence for their use in three clinical scenarios: seizures, increased intracranial pressure, and stroke.
Publikationsverlauf
Eingereicht: 23. Juli 2025
Angenommen: 01. August 2025
Artikel online veröffentlicht:
20. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Hunt A, Tasker RC, Deep A. Neurocritical care monitoring of encephalopathic children with acute liver failure: a systematic review. Pediatr Transplant 2019; 23 (07) e13556
- 2 Kirschen MP, LaRovere K, Balakrishnan B. et al; Pediatric Neurocritical Care Research Group (PNCRG). A survey of neuromonitoring practices in North American pediatric intensive care units. Pediatr Neurol 2022; 126: 125-130
- 3 Sarwal A, Robba C, Venegas C, Ziai W, Czosnyka M, Sharma D. Are we ready for clinical therapy based on cerebral autoregulation? A pro-con debate. Neurocrit Care 2023; 39 (02) 269-283
- 4 Benedetti GM, Guerriero RM, Press CA. Review of noninvasive neuromonitoring modalities in children II: EEG, qEEG. Neurocrit Care 2023; 39 (03) 618-638
- 5 Herman ST, Abend NS, Bleck TP. et al; Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol 2015; 32 (02) 87-95
- 6 Hirsch LJ, Fong MWK, Leitinger M. et al. American clinical neurophysiology society's standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol 2021; 38 (01) 1-29
- 7 Jordan KG. Reduced electrode arrays for acute electroencephalography: can less be more?. Clin Neurophysiol 2017; 128 (08) 1519-1521
- 8 MacDarby LJ, Healy M, Curley G, McHugh JC. Amplitude integrated electroencephalography - reference values in children aged 2 months to 16 years. Acta Paediatr 2022; 111 (12) 2337-2343
- 9 Bruns N, Felderhoff-Müser U, Dohna-Schwake C. aEEG as a useful tool for neuromonitoring in critically ill children - current evidence and knowledge gaps. Acta Paediatr 2021; 110 (04) 1132-1140
- 10 Bruns N, Felderhoff-Müser U, Dohna-Schwake C, Woelfle J, Müller H. aEEG use in pediatric critical care—an online survey. Front Pediatr 2020; 8: 3
- 11 Tacke M, Janson K, Vill K. et al. Effects of a reduction of the number of electrodes in the EEG montage on the number of identified seizure patterns. Sci Rep 2022; 12 (01) 4621
- 12 Stevenson NJ, Lauronen L, Vanhatalo S. The effect of reducing EEG electrode number on the visual interpretation of the human expert for neonatal seizure detection. Clin Neurophysiol 2018; 129 (01) 265-270
- 13 Westover MB, Gururangan K, Markert MS. et al. Diagnostic value of electroencephalography with ten electrodes in critically ill patients. Neurocrit Care 2020; 33 (02) 479-490
- 14 Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 2009; 103 (Suppl. 01) i3-i13
- 15 Bruns N, Moosmann J, Münch F. et al. How to administer near-infrared spectroscopy in critically ill neonates, infants, and children. J Vis Exp 2020; (162) e61533
- 16 LaRovere KL, Tasker RC, Wainwright M. et al; Pediatric Neurocritical Care Research Group (PNCRG). Transcranial doppler ultrasound during critical illness in children: survey of practices in pediatric neurocritical care centers. Pediatr Crit Care Med 2020; 21 (01) 67-74
- 17 Lovett ME, O'Brien NF. Transcranial doppler ultrasound, a review for the pediatric intensivist. Children (Basel) 2022; 9 (05) 727
- 18 O'Brien NF, Reuter-Rice K, Wainwright MS. et al. Practice recommendations for transcranial doppler ultrasonography in critically ill children in the pediatric intensive care unit: a multidisciplinary expert consensus statement. J Pediatr Intensive Care 2021; 10 (02) 133-142
- 19 Singh Y, Tissot C, Fraga MV. et al. International evidence-based guidelines on point of care ultrasound (POCUS) for critically ill neonates and children issued by the POCUS Working Group of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit Care 2020; 24 (01) 65
- 20 Olson DM, Stutzman S, Saju C, Wilson M, Zhao W, Aiyagari V. Interrater reliability of pupillary assessments. Neurocrit Care 2016; 24 (02) 251-257
- 21 Fung FW, Wang Z, Parikh DS. et al. Electrographic seizures and outcome in critically ill children. Neurology 2021; 96 (22) e2749-e2760
- 22 Trowbridge SK, Condie LO, Landers JR. et al; Boston Bumetanide Trial Group. Effect of neonatal seizure burden and etiology on the long-term outcome: data from a randomized, controlled trial. Ann Child Neurol Soc 2023; 1 (01) 53-65
- 23 Lalgudi Ganesan S, Hahn CD. Electrographic seizure burden and outcomes following pediatric status epilepticus. Epilepsy Behav 2019; 101 (Pt B): 106409
- 24 Jette N, Claassen J, Emerson RG, Hirsch LJ. Frequency and predictors of nonconvulsive seizures during continuous electroencephalographic monitoring in critically ill children. Arch Neurol 2006; 63 (12) 1750-1755
- 25 Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed 2008; 93 (03) F187-F191
- 26 Wusthoff CJ, Sundaram V, Abend NS. et al; Neonatal Seizure Registry Group. Seizure control in neonates undergoing screening vs confirmatory EEG monitoring. Neurology 2021; 97 (06) e587-e596
- 27 Tacke M, Janson K, Vill K. et al. The influence of information about the circumstances of EEG recordings on the ability to identify seizure patterns. Seizure 2021; 88: 125-129
- 28 Kanamori K, Sakaguchi Y, Miyama S. The utility of limited-montage electroencephalography for seizure detection in children. Pediatr Neurol 2022; 137: 1-5
- 29 Lalgudi Ganesan S, Stewart CP, Atenafu EG. et al. Seizure identification by critical care providers using quantitative electroencephalography. Crit Care Med 2018; 46 (12) e1105-e1111
- 30 Rowberry T, Kanthimathinathan HK, George F. et al. Implementation and early evaluation of a quantitative electroencephalography program for seizure detection in the PICU. Pediatr Crit Care Med 2020; 21 (06) 543-549
- 31 Din F, Lalgudi Ganesan S, Akiyama T. et al. Seizure detection algorithms in critically ill children: a comparative evaluation. Crit Care Med 2020; 48 (04) 545-552
- 32 Godau J, Bierwirth C, Rösche J, Bösel J. Quantitative infrared pupillometry in nonconvulsive status epilepticus. Neurocrit Care 2021; 35 (01) 113-120
- 33 Hocker S. Pupillometry for diagnosing nonconvulsive status epilepticus and assessing treatment response?. Neurocrit Care 2021; 35 (02) 304-305
- 34 Narayan V, Mohammed N, Savardekar AR, Patra DP, Notarianni C, Nanda A. Noninvasive intracranial pressure monitoring for severe traumatic brain injury in children: a concise update on current methods. World Neurosurg 2018; 114: 293-300
- 35 Sansevere AJ, DiBacco ML, Pearl PL, Rotenberg A. Quantitative electroencephalography for early detection of elevated intracranial pressure in critically ill children: case series and proposed protocol. J Child Neurol 2022; 37 (01) 5-11
- 36 Kampfl A, Pfausler B, Denchev D, Jaring H, Schmutzhard E. Near infrared spectroscopy (NIRS) in patients with severe brain injury and elevated intracranial pressure: A pilot study. Proceedings of the Tenth International Brain Edema Symposium, San Diego. 1997;112–114.
- 37 Ducrocq X, Hassler W, Moritake K. et al. Consensus opinion on diagnosis of cerebral circulatory arrest using Doppler-sonography: Task Force Group on cerebral death of the Neurosonology Research Group of the World Federation of Neurology. J Neurol Sci 1998; 159 (02) 145-150
- 38 O'Brien NF, Maa T, Reuter-Rice K. Noninvasive screening for intracranial hypertension in children with acute, severe traumatic brain injury. J Neurosurg Pediatr 2015; 16 (04) 420-425
- 39 Freeman AD, McCracken CE, Stockwell JA. Automated pupillary measurements inversely correlate with increased intracranial pressure in pediatric patients with acute brain injury or encephalopathy. Pediatr Crit Care Med 2020; 21 (08) 753-759
- 40 Fullerton HJ, Wintermark M, Hills NK. et al; VIPS Investigators. Risk of recurrent arterial ischemic stroke in childhood: a prospective international study. Stroke 2016; 47 (01) 53-59
- 41 Sarecka-Hujar B, Kopyta I. Risk factors for recurrent arterial ischemic stroke in children and young adults. Brain Sci 2020; 10 (01) 24
- 42 Dunbar M, Shah H, Shinde S. et al. Stroke in pediatric bacterial meningitis: population-based epidemiology. Pediatr Neurol 2018; 89: 11-18
- 43 Ezetendu C, Baloglu O, Othman HF, Nandakumar V, Latifi S, Aly H. Stroke in pediatric ECMO patients: analysis of the National Inpatient Sample (NIS) database. Pediatr Res 2022; 92 (03) 754-761
- 44 Harrar DB, Sun LR, Segal JB, Lee S, Sansevere AJ. Neuromonitoring in children with cerebrovascular disorders. Neurocrit Care 2023; 38 (02) 486-503
- 45 Rots ML, van Putten MJAM, Hoedemaekers CW, Horn J. Continuous EEG monitoring for early detection of delayed cerebral ischemia in subarachnoid hemorrhage: A pilot study. Neurocrit Care 2016; 24 (02) 207-216
- 46 Baang HY, Chen HY, Herman AL. et al. The utility of quantitative EEG in detecting delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Clin Neurophysiol 2022; 39 (03) 207-215
- 47 Sharbrough FW, Messick Jr JM, Sundt Jr TM. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 1973; 4 (04) 674-683
- 48 LaRovere KL, Kapur K, McElhinney DB, Razumovsky A, Kussman BD. Cerebral high-intensity transient signals during pediatric cardiac catheterization: a pilot study using transcranial doppler ultrasonography. J Neuroimaging 2017; 27 (04) 381-387