Subscribe to RSS

DOI: 10.1055/a-2679-3641
Microbial Modulation of the Gut–Liver Axis in Autoimmune Liver Diseases
Funding This research receives grants from the Fundamental Research Funds for the Central Universities (grant number: 2025ZFJH03); the Central Guidance Fund for Local Science and Technology Development (grant number: 2024ZY01054).

Abstract
Autoimmune liver diseases (AILDs), including autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis, are chronic inflammatory conditions influenced by complex interactions among genetic, environmental, and immunological factors. Recent studies have highlighted the critical role of the gut microbiota in regulating immune responses beyond the gastrointestinal tract via the gut–liver axis. This review examines the interactions between intestinal microecology and AILDs, with a focus on mechanisms such as bacterial translocation, disruption of the intestinal barrier, and modulation of microbial metabolites. Dysbiosis, involving alterations in both bacterial and fungal communities, has been associated with immune dysregulation and hepatic inflammation. Evidence indicates that short-chain fatty acids, bile acids, and microbial products such as lipopolysaccharides influence hepatic immune tolerance and inflammatory signaling pathways. Several diagnostic and therapeutic approaches, including probiotics, fecal microbiota transplantation, and bile acid regulation, have shown potential to slow or alter disease progression. However, the clinical translation of these findings remains limited due to interindividual variability and the complex nature of the gut–liver axis. Continued research is needed to develop precision medicine strategies that can harness intestinal microecology for improved management of AILDs.
Keywords
autoimmune liver diseases - gut–liver axis - gut microbiota - intestinal dysbiosis - microbial metabolites - microbial biomarkersData Availability
Data will be made available on request.
Ethics Approval and Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Authors' Contribution
S.W.: writing—original draft, visualization, methodology, data curation, conceptualization. J.L.: conceptualization, supervision, writing—review and editing.
Publication History
Article published online:
27 August 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Ruff WE, Kriegel MA. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol Med 2015; 21 (04) 233-244
- 2 Dehner C, Fine R, Kriegel MA. The microbiome in systemic autoimmune disease: mechanistic insights from recent studies. Curr Opin Rheumatol 2019; 31 (02) 201-207
- 3 Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med 2016; 375 (24) 2369-2379
- 4 Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome. Trends Microbiol 2013; 21 (07) 334-341
- 5 Nash AK, Auchtung TA, Wong MC. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 2017; 5 (01) 153
- 6 Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 2014; 14 (06) 405-416
- 7 Zhai B, Ola M, Rolling T. et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med 2020; 26 (01) 59-64
- 8 Wu G, Xu T, Zhao N. et al. A core microbiome signature as an indicator of health. Cell 2024; 187 (23) 6550-6565.e11
- 9 Lau HCH, Zhang X, Yu J. Gut microbiota and immune alteration in cancer development: implication for immunotherapy. eGastroenterology 2023; 1 (01) e100007
- 10 Ruff WE, Greiling TM, Kriegel MA. Host-microbiota interactions in immune-mediated diseases. Nat Rev Microbiol 2020; 18 (09) 521-538
- 11 McDonald B, Zucoloto AZ, Yu IL. et al. Programing of an intravascular immune firewall by the gut microbiota protects against pathogen dissemination during infection. Cell Host Microbe 2020; 28 (05) 660-668.e4
- 12 Zmora N, Levy M, Pevsner-Fishcer M, Elinav E. Inflammasomes and intestinal inflammation. Mucosal Immunol 2017; 10 (04) 865-883
- 13 Henao-Mejia J, Elinav E, Jin C. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482 (7384): 179-185
- 14 Wells JM, Brummer RJ, Derrien M. et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017; 312 (03) G171-G193
- 15 Kim DH, Sim Y, Hwang JH. et al. Ellagic acid prevents binge alcohol-induced leaky gut and liver injury through inhibiting gut dysbiosis and oxidative stress. Antioxidants 2021; 10 (09) 1386
- 16 Nakamoto N, Sasaki N, Aoki R. et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat Microbiol 2019; 4 (03) 492-503
- 17 Camilli G, Tabouret G, Quintin J. The complexity of fungal β-glucan in health and disease: effects on the mononuclear phagocyte system. Front Immunol 2018; 9: 673
- 18 Vuscan P, Kischkel B, Hatzioannou A. et al. Potent induction of trained immunity by Saccharomyces cerevisiae β-glucans. Front Immunol 2024; 15: 1323333
- 19 Yang AM, Inamine T, Hochrath K. et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 2017; 127 (07) 2829-2841
- 20 Chu H, Duan Y, Lang S. et al. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. J Hepatol 2020; 72 (03) 391-400
- 21 Zeng S, Schnabl B. Gut mycobiome alterations and implications for liver diseases. PLoS Pathog 2024; 20 (08) e1012377
- 22 Kulaksiz H, Rudolph G, Kloeters-Plachky P, Sauer P, Geiss H, Stiehl A. Biliary candida infections in primary sclerosing cholangitis. J Hepatol 2006; 45 (05) 711-716
- 23 Barreto HC, Gordo I. Intrahost evolution of the gut microbiota. Nat Rev Microbiol 2023; 21 (09) 590-603
- 24 Yang Y, Nguyen M, Khetrapal V. et al. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 2022; 607 (7919): 563-570
- 25 Yaffe E, Relman DA. Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat Microbiol 2020; 5 (02) 343-353
- 26 Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 2017; 12 (06) e0179586
- 27 Kelly CJ, Zheng L, Campbell EL. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015; 17 (05) 662-671
- 28 Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024; 24 (08) 577-595
- 29 Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe 2022; 3 (12) e969-e983
- 30 Tian P, Yang W, Guo X. et al. Early life gut microbiota sustains liver-resident natural killer cells maturation via the butyrate-IL-18 axis. Nat Commun 2023; 14 (01) 1710
- 31 Yin Y, Sichler A, Ecker J. et al. Gut microbiota promote liver regeneration through hepatic membrane phospholipid biosynthesis. J Hepatol 2023; 78 (04) 820-835
- 32 Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr 2003; 133 (7, Suppl): 2485S-2493S
- 33 Thangaraju M, Cresci GA, Liu K. et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 2009; 69 (07) 2826-2832
- 34 Yang W, Yu T, Huang X. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 2020; 11 (01) 4457
- 35 Sun M, Wu W, Chen L. et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun 2018; 9 (01) 3555
- 36 Vinolo MA, Hatanaka E, Lambertucci RH, Newsholme P, Curi R. Effects of short chain fatty acids on effector mechanisms of neutrophils. Cell Biochem Funct 2009; 27 (01) 48-55
- 37 Singh N, Gurav A, Sivaprakasam S. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40 (01) 128-139
- 38 Lee MH, Nuccio SP, Mohanty I. et al. How bile acids and the microbiota interact to shape host immunity. Nat Rev Immunol 2024; 24 (11) 798-809
- 39 Mouries J, Brescia P, Silvestri A. et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 2019; 71 (06) 1216-1228
- 40 Panzitt K, Wagner M. FXR in liver physiology: multiple faces to regulate liver metabolism. Biochim Biophys Acta Mol Basis Dis 2021; 1867 (07) 166133
- 41 Gadaleta RM, Moschetta A. Metabolic messengers: fibroblast growth factor 15/19. Nat Metab 2019; 1 (06) 588-594
- 42 Xu W, Cui C, Cui C. et al. Hepatocellular cystathionine γ lyase/hydrogen sulfide attenuates nonalcoholic fatty liver disease by activating farnesoid X receptor. Hepatology 2022; 76 (06) 1794-1810
- 43 Liu S, Kang W, Mao X. et al. Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice. J Pineal Res 2022; 73 (02) e12812
- 44 Cao P, Gan J, Wu S. et al. Molecular mechanisms of hepatoprotective effect of tectorigenin against ANIT-induced cholestatic liver injury: role of FXR and Nrf2 pathways. Food Chem Toxicol 2023; 178: 113914
- 45 Beilke LD, Aleksunes LM, Olson ER. et al. Decreased apoptosis during CAR-mediated hepatoprotection against lithocholic acid-induced liver injury in mice. Toxicol Lett 2009; 188 (01) 38-44
- 46 Lu Q, Zhu Y, Wang C. et al. Obeticholic acid protects against lithocholic acid-induced exogenous cell apoptosis during cholestatic liver injury. Life Sci 2024; 337: 122355
- 47 Song L, Hou Y, Xu D. et al. Hepatic FXR-FGF4 is required for bile acid homeostasis via an FGFR4-LRH-1 signal node under cholestatic stress. Cell Metab 2025; 37 (01) 104-120.e9
- 48 Péan N, Doignon I, Garcin I. et al. The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology 2013; 58 (04) 1451-1460
- 49 Reich M, Spomer L, Klindt C. et al. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. J Hepatol 2021; 75 (03) 634-646
- 50 Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel) 2017; 5 (04) 34
- 51 Wang Y, Chen H, Chen Q, Jiao FZ, Zhang WB, Gong ZJ. The protective mechanism of CAY10683 on intestinal mucosal barrier in acute liver failure through LPS/TLR4/MyD88 Pathway. Mediators Inflamm 2018; 2018: 7859601
- 52 Fang S, Wang T, Li Y. et al. Gardenia jasminoides Ellis polysaccharide ameliorates cholestatic liver injury by alleviating gut microbiota dysbiosis and inhibiting the TLR4/NF-κB signaling pathway. Int J Biol Macromol 2022; 205: 23-36
- 53 Yao L, Cai H, Fang Q. et al. Piceatannol alleviates liver ischaemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 in hepatic macrophages. Eur J Pharmacol 2023; 960: 176149
- 54 Chen SN, Tan Y, Xiao XC. et al. Deletion of TLR4 attenuates lipopolysaccharide-induced acute liver injury by inhibiting inflammation and apoptosis. Acta Pharmacol Sin 2021; 42 (10) 1610-1619
- 55 Schneider KM, Kummen M, Trivedi PJ, Hov JR. Role of microbiome in autoimmune liver diseases. Hepatology 2024; 80 (04) 965-987
- 56 Zhang Q, Wei J, Liu Z. et al. STING signaling sensing of DRP1-dependent mtDNA release in Kupffer cells contributes to lipopolysaccharide-induced liver injury in mice. Redox Biol 2022; 54: 102367
- 57 Wang Z, Sun P, Pan B. et al. IL-33/ST2 antagonizes STING signal transduction via autophagy in response to acetaminophen-mediated toxicological immunity. Cell Commun Signal 2023; 21 (01) 80
- 58 Varga KZ, Gyurina K, Radványi Á. et al. Stimulator of interferon genes (STING) triggers adipocyte autophagy. Cells 2023; 12 (19) 2345
- 59 Liu Y, Zhang X, Chen S. et al. Gut-derived lipopolysaccharide promotes alcoholic hepatosteatosis and subsequent hepatocellular carcinoma by stimulating neutrophil extracellular traps through toll-like receptor 4. Clin Mol Hepatol 2022; 28 (03) 522-539
- 60 Engel B, Taubert R, Jaeckel E, Manns MP. The future of autoimmune liver diseases - understanding pathogenesis and improving morbidity and mortality. Liver Int 2020; 40 (Suppl. 01) 149-153
- 61 Yuksel M, Wang Y, Tai N. et al. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation. Hepatology 2015; 62 (05) 1536-1550
- 62 Manfredo Vieira S, Hiltensperger M, Kumar V. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018; 359 (6380): 1156-1161
- 63 Lv LX, Fang DQ, Shi D. et al. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol 2016; 18 (07) 2272-2286
- 64 Tang R, Wei Y, Li Y. et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut 2018; 67 (03) 534-541
- 65 Li B, Zhang J, Chen Y. et al. Alterations in microbiota and their metabolites are associated with beneficial effects of bile acid sequestrant on icteric primary biliary cholangitis. Gut Microbes 2021; 13 (01) 1946366
- 66 Dyson JK, Beuers U, Jones DEJ, Lohse AW, Hudson M. Primary sclerosing cholangitis. Lancet 2018; 391 (10139): 2547-2559
- 67 Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis - a comprehensive review. J Hepatol 2017; 67 (06) 1298-1323
- 68 Hov JR, Karlsen TH. The microbiota and the gut-liver axis in primary sclerosing cholangitis. Nat Rev Gastroenterol Hepatol 2023; 20 (03) 135-154
- 69 Tedesco D, Thapa M, Chin CY. et al. Alterations in intestinal microbiota lead to production of interleukin 17 by intrahepatic γδ T-cell receptor-positive cells and pathogenesis of cholestatic liver disease. Gastroenterology 2018; 154 (08) 2178-2193
- 70 Lemoinne S, Kemgang A, Ben Belkacem K. et al; Saint-Antoine IBD Network. Fungi participate in the dysbiosis of gut microbiota in patients with primary sclerosing cholangitis. Gut 2020; 69 (01) 92-102
- 71 Sokol H, Leducq V, Aschard H. et al. Fungal microbiota dysbiosis in IBD. Gut 2017; 66 (06) 1039-1048
- 72 Rühlemann MC, Solovjeva MEL, Zenouzi R. et al. Gut mycobiome of primary sclerosing cholangitis patients is characterised by an increase of Trichocladium griseum and Candida species. Gut 2020; 69 (10) 1890-1892
- 73 Rudolph G, Gotthardt D, Klöters-Plachky P, Kulaksiz H, Rost D, Stiehl A. Influence of dominant bile duct stenoses and biliary infections on outcome in primary sclerosing cholangitis. J Hepatol 2009; 51 (01) 149-155
- 74 Perugino CA, Stone JH. IgG4-related disease: an update on pathophysiology and implications for clinical care. Nat Rev Rheumatol 2020; 16 (12) 702-714
- 75 Liu Q, Li B, Li Y. et al. Altered faecal microbiome and metabolome in IgG4-related sclerosing cholangitis and primary sclerosing cholangitis. Gut 2022; 71 (05) 899-909
- 76 Connors J, Dawe N, Van Limbergen J. The role of succinate in the regulation of intestinal inflammation. Nutrients 2018; 11 (01) 25
- 77 Rutkowsky JM, Knotts TA, Ono-Moore KD. et al. Acylcarnitines activate proinflammatory signaling pathways. Am J Physiol Endocrinol Metab 2014; 306 (12) E1378-E1387
- 78 Nadjsombati MS, McGinty JW, Lyons-Cohen MR. et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 2018; 49 (01) 33-41.e7
- 79 Erstad DJ, Tanabe KK. Hepatocellular carcinoma: early-stage management challenges. J Hepatocell Carcinoma 2017; 4: 81-92
- 80 Lu J, Shen X, Li H, Du J. Recent advances in bacteria-based platforms for inflammatory bowel diseases treatment. Exploration (Beijing) 2024; 4 (05) 20230142
- 81 Wei Y, Li Y, Yan L. et al. Alterations of gut microbiome in autoimmune hepatitis. Gut 2020; 69 (03) 569-577
- 82 Huber RM, Murphy K, Miao B. et al. Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 2002; 290 (1-2): 35-43
- 83 Kummen M, Holm K, Anmarkrud JA. et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 2017; 66 (04) 611-619
- 84 Iwasawa K, Suda W, Tsunoda T. et al. Characterisation of the faecal microbiota in Japanese patients with paediatric-onset primary sclerosing cholangitis. Gut 2017; 66 (07) 1344-1346
- 85 Liwinski T, Casar C, Ruehlemann MC. et al. A disease-specific decline of the relative abundance of Bifidobacterium in patients with autoimmune hepatitis. Aliment Pharmacol Ther 2020; 51 (12) 1417-1428
- 86 Furukawa M, Moriya K, Nakayama J. et al. Gut dysbiosis associated with clinical prognosis of patients with primary biliary cholangitis. Hepatol Res 2020; 50 (07) 840-852
- 87 Zhang J, Wu G, Tang Y. et al. Causal associations between gut microbiota and primary biliary cholangitis: a bidirectional two-sample Mendelian randomization study. Front Microbiol 2023; 14: 1273024
- 88 Sabino J, Vieira-Silva S, Machiels K. et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 2016; 65 (10) 1681-1689
- 89 López P, de Paz B, Rodríguez-Carrio J. et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep 2016; 6: 24072
- 90 Zhang H, Liu M, Liu X. et al. Bifidobacterium animalis ssp. lactis 420 mitigates autoimmune hepatitis through regulating intestinal barrier and liver immune cells. Front Immunol 2020; 11: 569104
- 91 Ma L, Zhang L, Zhuang Y, Ding Y, Chen J. Lactobacillus improves the effects of prednisone on autoimmune hepatitis via gut microbiota-mediated follicular helper T cells. Cell Commun Signal 2022; 20 (01) 83
- 92 Wu L, Zhou J, Zhou A. et al. Lactobacillus acidophilus ameliorates cholestatic liver injury through inhibiting bile acid synthesis and promoting bile acid excretion. Gut Microbes 2024; 16 (01) 2390176
- 93 Liwinski T, Heinemann M, Schramm C. The intestinal and biliary microbiome in autoimmune liver disease-current evidence and concepts. Semin Immunopathol 2022; 44 (04) 485-507
- 94 Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 2022; 19 (10) 625-637
- 95 Xia J, Lv L, Liu B. et al. Akkermansia muciniphila ameliorates acetaminophen-induced liver injury by regulating gut microbial composition and metabolism. Microbiol Spectr 2022; 10 (01) e0159621
- 96 Yelin I, Flett KB, Merakou C. et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med 2019; 25 (11) 1728-1732
- 97 Ma C, Zhang C, Chen D. et al. Probiotic consumption influences universal adaptive mutations in indigenous human and mouse gut microbiota. Commun Biol 2021; 4 (01) 1198
- 98 Montassier E, Valdés-Mas R, Batard E. et al. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat Microbiol 2021; 6 (08) 1043-1054
- 99 Kerek Á, Román I, Szabó Á, Pézsa NP, Jerzsele Á. Antibiotic resistance gene expression in veterinary probiotics: two sides of the coin. Vet Sci 2025; 12 (03) 217
- 100 Shahali A, Soltani R, Akbari V. Probiotic Lactobacillus and the potential risk of spreading antibiotic resistance: a systematic review. Res Pharm Sci 2023; 18 (05) 468-477
- 101 van Nood E, Vrieze A, Nieuwdorp M. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile . N Engl J Med 2013; 368 (05) 407-415
- 102 Ye ZN, Eslick GD, Huang SG, He XX. Faecal microbiota transplantation for eradicating Helicobacter pylori infection: clinical practice and theoretical postulation. eGastroenterology 2024; 2 (04) e100099
- 103 Liptak R, Gromova B, Gardlik R. Fecal microbiota transplantation as a tool for therapeutic modulation of non-gastrointestinal disorders. Front Med (Lausanne) 2021; 8: 665520
- 104 Allegretti JR, Kassam Z, Carrellas M. et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial. Am J Gastroenterol 2019; 114 (07) 1071-1079
- 105 Ma L, Song J, Chen X, Dai D, Chen J, Zhang L. Fecal microbiota transplantation regulates TFH/TFR cell imbalance via TLR/MyD88 pathway in experimental autoimmune hepatitis. Heliyon 2023; 9 (10) e20591
- 106 Zhang H, Lian M, Zhang J. et al. A functional characteristic of cysteine-rich protein 61: modulation of myeloid-derived suppressor cells in liver inflammation. Hepatology 2018; 67 (01) 232-246
- 107 Wang R, Li B, Huang B. et al. Gut microbiota-derived butyrate induces epigenetic and metabolic reprogramming in myeloid-derived suppressor cells to alleviate primary biliary cholangitis. Gastroenterology 2024; 167 (04) 733-749.e3
- 108 Juárez-Fernández M, Porras D, Petrov P. et al. The synbiotic combination of Akkermansia muciniphila and quercetin ameliorates early obesity and NAFLD through gut microbiota reshaping and bile acid metabolism modulation. Antioxidants 2021; 10 (12) 2001
- 109 Lv P, Han P, Cui Y, Chen Q, Cao W. Quercetin attenuates inflammation in LPS-induced lung epithelial cells via the Nrf2 signaling pathway. Immun Inflamm Dis 2024; 12 (02) e1185
- 110 Han Y, Ling Q, Wu L. et al. Akkermansia muciniphila inhibits nonalcoholic steatohepatitis by orchestrating TLR2-activated γδT17 cell and macrophage polarization. Gut Microbes 2023; 15 (01) 2221485
- 111 Wei L, Pan Y, Guo Y. et al. Symbiotic combination of Akkermansia muciniphila and inosine alleviates alcohol-induced liver injury by modulating gut dysbiosis and immune responses. Front Microbiol 2024; 15: 1355225
- 112 Tabibian JH, Weeding E, Jorgensen RA. et al. Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis - a pilot study. Aliment Pharmacol Ther 2013; 37 (06) 604-612
- 113 Shah A, Crawford D, Burger D. et al. Effects of antibiotic therapy in primary sclerosing cholangitis with and without inflammatory bowel disease: a systematic review and meta-analysis. Semin Liver Dis 2019; 39 (04) 432-441
- 114 Kunzmann LK, Schoknecht T, Poch T. et al. Monocytes as potential mediators of pathogen-induced T-helper 17 differentiation in patients with primary sclerosing cholangitis (PSC). Hepatology 2020; 72 (04) 1310-1326
- 115 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444 (7122): 1027-1031
- 116 Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489 (7415): 220-230
- 117 Yu ZT, Chen C, Kling DE. et al. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology 2013; 23 (02) 169-177
- 118 Yatsunenko T, Rey FE, Manary MJ. et al. Human gut microbiome viewed across age and geography. Nature 2012; 486 (7402): 222-227
- 119 Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 2015; 33 (09) 496-503
- 120 Strauss J, Kaplan GG, Beck PL. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis 2011; 17 (09) 1971-1978
- 121 Castellarin M, Warren RL, Freeman JD. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22 (02) 299-306
- 122 Xue C, Li G, Gu X. et al. Health and disease: Akkermansia muciniphila, the shining star of the gut flora. Research (Wash D C) 2023; 6: 0107
- 123 Kirmiz N, Galindo K, Cross KL. et al. Comparative genomics guides elucidation of vitamin B(12) biosynthesis in novel human-associated Akkermansia strains. Appl Environ Microbiol 2020; 86 (03) e02117-19
- 124 Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2019; 16 (06) 331-345
- 125 Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials–a mycologist's perspective. Mycologia 2015; 107 (06) 1057-1073
- 126 Begum N, Harzandi A, Lee S, Uhlen M, Moyes DL, Shoaie S. Host-mycobiome metabolic interactions in health and disease. Gut Microbes 2022; 14 (01) 2121576
- 127 Rizzetto L, De Filippo C, Cavalieri D. Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur J Immunol 2014; 44 (11) 3166-3181
- 128 Mirzaei MK, Maurice CF. Ménage à trois in the human gut: interactions between host, bacteria and phages. Nat Rev Microbiol 2017; 15 (07) 397-408
- 129 Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124 (04) 837-848
- 130 Samuel BS, Hansen EE, Manchester JK. et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 2007; 104 (25) 10643-10648
- 131 Kaisar MMM, Pelgrom LR, van der Ham AJ, Yazdanbakhsh M, Everts B. Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109a signaling. Front Immunol 2017; 8: 1429
- 132 Park J, Kim M, Kang SG. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 2015; 8 (01) 80-93
- 133 Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol 2018; 831: 52-59
- 134 Qu S, Gao Y, Ma J, Yan Q. Microbiota-derived short-chain fatty acids functions in the biology of B lymphocytes: from differentiation to antibody formation. Biomed Pharmacother 2023; 168: 115773
- 135 Yan Q, Jia S, Li D, Yang J. The role and mechanism of action of microbiota-derived short-chain fatty acids in neutrophils: from the activation to becoming potential biomarkers. Biomed Pharmacother 2023; 169: 115821
- 136 Inamoto T, Furuta K, Han C. et al. Short-chain fatty acids stimulate dendrite elongation in dendritic cells by inhibiting histone deacetylase. FEBS J 2023; 290 (24) 5794-5810
- 137 Becker D, Valk E, Zahn S, Brand P, Knop J. Coupling of contact sensitizers to thiol groups is a key event for the activation of monocytes and monocyte-derived dendritic cells. J Invest Dermatol 2003; 120 (02) 233-238
- 138 Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165: 115276
- 139 Hang S, Paik D, Yao L. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 2019; 576 (7785): 143-148
- 140 Shi Y, Su W, Zhang L. et al. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation. Front Immunol 2021; 11: 609060
- 141 Sorrentino G, Perino A, Yildiz E. et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology 2020; 159 (03) 956-968.e8
- 142 Ma C, Han M, Heinrich B. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018; 360 (6391): eaan5931
- 143 Seki E, De Minicis S, Osterreicher CH. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13 (11) 1324-1332
- 144 Zhang Y, Zhan L, Zhang L, Shi Q, Li L. Branched-chain amino acids in liver diseases: complexity and controversy. Nutrients 2024; 16 (12) 1875
- 145 Kakazu E, Ueno Y, Kondo Y. et al. Branched chain amino acids enhance the maturation and function of myeloid dendritic cells ex vivo in patients with advanced cirrhosis. Hepatology 2009; 50 (06) 1936-1945
- 146 Nishitani S, Horie M, Ishizaki S, Yano H. Branched chain amino acid suppresses hepatocellular cancer stem cells through the activation of mammalian target of rapamycin. PLoS One 2013; 8 (11) e82346