RSS-Feed abonnieren
DOI: 10.1055/a-2681-6597
Updates in Cerebrovascular Imaging

Abstract
Cerebrovascular imaging has undergone significant advances, enhancing the diagnosis and management of cerebrovascular diseases such as stroke, aneurysms, and arteriovenous malformations. This chapter explores key imaging modalities, including non-contrast computed tomography, computed tomography angiography, magnetic resonance imaging (MRI), and digital subtraction angiography. Innovations such as high-resolution vessel wall imaging, artificial intelligence (AI)-driven stroke detection, and advanced perfusion imaging have improved diagnostic accuracy and treatment selection. Additionally, novel techniques like 7-T MRI, molecular imaging, and functional ultrasound provide deeper insights into vascular pathology. AI and machine learning applications are revolutionizing automated detection and prognostication, expediting treatment decisions. Challenges remain in standardization, radiation exposure, and accessibility. However, continued technological advances, multimodal imaging integration, and AI-driven automation promise a future of precise, non-invasive cerebrovascular diagnostics, ultimately improving patient outcomes.
Publikationsverlauf
Eingereicht: 13. April 2025
Accepted Manuscript online:
13. August 2025
Artikel online veröffentlicht:
12. September 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Tondreau RL. The retrospectoscope. Egas Moniz 1874-1955. Radiographics 1985; 5 (06) 994-997
- 2 MacDonald ME, Frayne R. Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques. NMR Biomed 2015; 28 (07) 767-791
- 3 Liu F, Yao Y, Zhu B, Yu Y, Ren R, Hu Y. The novel imaging methods in diagnosis and assessment of cerebrovascular diseases: an overview. Front Med (Lausanne) 2024; 11: 1269742
- 4 Nguyen TN, Klein P, Berberich A. et al. Late window imaging selection for endovascular therapy of large vessel occlusion stroke: an international survey. Stroke Vasc Intervent Neurol 2023; 3 (01) e000595
- 5 Nguyen TN, Castonguay AC, Siegler JE. et al.; SVIN GAPS Committee. Mechanical thrombectomy in the late presentation of anterior circulation large vessel occlusion stroke: A guideline from the Society of Vascular and Interventional Neurology Guidelines and Practice Standards Committee. Stroke Vasc Intervent Neurol 2023; 3 (01) e000512
- 6 Powers WJ. Acute ischemic stroke. N Engl J Med 2020; 383 (03) 252-260
- 7 Herpe G, Platon A, Poletti PA. et al. Dual-energy CT in acute stroke: Could non-contrast CT be replaced by virtual non-contrast CT? A feasibility study. J Clin Med 2024; 13 (13) 3647
- 8 Shinohara Y, Ohmura T, Sasaki F. et al. Dual-energy computed tomography virtual noncalcium imaging of intracranial arteries in acute ischemic stroke: Differentiation between acute thrombus and calcification. J Comput Assist Tomogr 2024; 48 (06) 986-990
- 9 Almqvist H, Almqvist NS, Holmin S, Mazya MV, Dual-Energy CT. Dual-energy CT follow-up after stroke thrombolysis alters assessment of hemorrhagic complications. Front Neurol 2020; 11: 357
- 10 Horst KK, Cao JY, McCollough CH. et al. Multi-institutional protocol guidance for pediatric photon-counting CT. Radiology 2024; 311 (02) e231741
- 11 Olive-Gadea M, Crespo C, Granes C. et al. Deep learning based software to identify large vessel occlusion on noncontrast computed tomography. Stroke 2020; 51 (10) 3133-3137
- 12 Han JH, Ha SY, Lee H. et al. Automated identification of thrombectomy amenable vessel occlusion on computed tomography angiography using deep learning. Front Neurol 2024; 15: 1442025
- 13 Brugnara G, Baumgartner M, Scholze ED. et al. Deep-learning based detection of vessel occlusions on CT-angiography in patients with suspected acute ischemic stroke. Nat Commun 2023; 14 (01) 4938
- 14 Amukotuwa SA, Straka M, Smith H. et al. Automated detection of intracranial large vessel occlusions on computed tomography angiography: A single center experience. Stroke 2019; 50 (10) 2790-2798
- 15 Wang C, Chen S, Mi D. A task-driven cerebral angiographic imaging based on CT perfusion. Front Neurol 2024; 14: 1328184
- 16 Kaiser DPO, Abdalkader M, Berberich A, Sporns PB, Nguyen TN. Acute shortage of iodinated contrast media: implications and guidance for neurovascular imaging and intervention. Neuroradiology 2022; 64 (09) 1715-1718
- 17 American College of Radiology. ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media. 2024.
- 18 Huang LX, Wu XB, Liu YA. et al. High-resolution magnetic resonance vessel wall imaging in ischemic stroke and carotid artery atherosclerotic stenosis: A review. Heliyon 2024; 10 (07) e27948
- 19 Kesav P, Krishnavadana B, Kesavadas C. et al. Utility of intracranial high-resolution vessel wall magnetic resonance imaging in differentiating intracranial vasculopathic diseases causing ischemic stroke. Neuroradiology 2019; 61 (04) 389-396
- 20 Lehman VT, Brinjikji W, Kallmes DF. et al. Clinical interpretation of high-resolution vessel wall MRI of intracranial arterial diseases. Br J Radiol 2016; 89 (1067): 20160496
- 21 Yang H, Huang G, Li X. et al. High-resolution magnetic resonance vessel wall imaging provides new insights into Moyamoya disease. Front Neurosci 2024; 18: 1375645
- 22 Le Bihan D, Mangin JF, Poupon C. et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001; 13 (04) 534-546
- 23 Yang S, Zhou Y, Wang F. et al. Diffusion tensor imaging in cerebral small vessel disease applications: opportunities and challenges. Front Neurosci 2024; 18: 1473462
- 24 da Silva PHR, Paschoal AM, Secchinatto KF. et al. Contrast agent-free state-of-the-art magnetic resonance imaging on cerebral small vessel disease - Part 2: Diffusion tensor imaging and functional magnetic resonance imaging. NMR Biomed 2022; 35 (08) e4743
- 25 Xu J, Zhong H, Wu L. Magnetic resonance diffusion tensor imaging for detecting the cerebral microstructure changes in patients with CSVD-induced mild cognitive impairment. J Neurophysiol 2024; 132 (06) 1937-1942
- 26 Zeestraten EA, Benjamin P, Lambert C. et al. Application of diffusion tensor imaging parameters to detect change in longitudinal studies in cerebral small vessel disease. PLoS ONE 2016; 11 (01) e0147836
- 27 Silva LL, Tuncer MS, Vajkoczy P, Picht T, Rosenstock T. Distinct approaches to language pathway tractography: comparison of anatomy-based, repetitive navigated transcranial magnetic stimulation (rTMS)-based, and rTMS-enhanced diffusion tensor imaging-fiber tracking. J Neurosurg 2021; 136 (02) 589-600
- 28 Sotak CH. The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review. NMR Biomed 2002; 15 (7-8): 561-569
- 29 Chen Z, Ni P, Zhang J. et al. Evaluating ischemic stroke with diffusion tensor imaging. Neurol Res 2008; 30 (07) 720-726
- 30 Nguyen TN. Management of unruptured intracranial aneurysms and brain arteriovenous malformations. Continuum (Minneap Minn) 2023; 29 (02) 584-604
- 31 Sui B, Sannananja B, Zhu C. et al. Report from the society of magnetic resonance angiography: clinical applications of 7T neurovascular MR in the assessment of intracranial vascular disease. J Neurointerv Surg 2024; 16 (08) 846-851
- 32 Park CA, Kang CK, Kim YB, Cho ZH. Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography. Neuroimage 2018; 168: 269-278
- 33 Wheaton AJ, Miyazaki M. Non-contrast enhanced MR angiography: physical principles. J Magn Reson Imaging 2012; 36 (02) 286-304
- 34 Togao O, Obara M, Yamashita K. et al. Arterial spin labeling-based MR angiography for cerebrovascular diseases: Principles and clinical applications. J Magn Reson Imaging 2024; 60 (04) 1305-1324
- 35 Lin Z, Zhang X, Guo L. et al. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing. J Magn Reson Imaging 2019; 50 (06) 1843-1851
- 36 Riederer SJ, Haider CR, Borisch EA, Weavers PT, Young PM. Recent advances in 3D time-resolved contrast-enhanced MR angiography. J Magn Reson Imaging 2015; 42 (01) 3-22
- 37 Grossberg JA, Howard BM, Saindane AM. The use of contrast-enhanced, time-resolved magnetic resonance angiography in cerebrovascular pathology. Neurosurg Focus 2019; 47 (06) E3
- 38 Erickson CC, Salerno JC, Berger S. et al.; SECTION ON CARDIOLOGY AND CARDIAC SURGERY, PEDIATRIC AND CONGENITAL ELECTROPHYSIOLOGY SOCIETY (PACES) TASK FORCE ON PREVENTION OF SUDDEN DEATH IN THE YOUNG. sudden death in the young: Information for the primary care provider. Pediatrics 2021; 148 (01) e2021052044
- 39 Brott TG, Halperin JL, Abbara S. et al. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. J Am Coll Cardiol 2011; 57 (08) e16-e94
- 40 AbuRahma AF, Avgerinos ED, Chang RW. et al. The Society for Vascular Surgery implementation document for management of extracranial cerebrovascular disease. J Vasc Surg 2022; 75 (1S): 26S-98S
- 41 Hayes SN, Kim ESH, Saw J. et al.; American Heart Association Council on Peripheral Vascular Disease; Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Genomic and Precision Medicine; and Stroke Council. Spontaneous coronary artery dissection: Current state of the science: A Scientific Statement From the American Heart Association. Circulation 2018; 137 (19) e523-e557
- 42 Kucukay F, Okten RS, Tekiner A. et al. Three-dimensional volume rendering digital subtraction angiography in comparison with two-dimensional digital subtraction angiography and rotational angiography for detecting aneurysms and their morphological properties in patients with subarachnoid hemorrhage. Eur J Radiol 2012; 81 (10) 2794-2800
- 43 Anxionnat R, Bracard S, Ducrocq X. et al. Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 2001; 218 (03) 799-808
- 44 Wong SC, Nawawi O, Ramli N, Abd Kadir KA. Benefits of 3D rotational DSA compared with 2D DSA in the evaluation of intracranial aneurysm. Acad Radiol 2012; 19 (06) 701-707
- 45 Falk KL, Schafer S, Speidel MA, Strother CM. 4D-DSA: Development and current neurovascular applications. AJNR Am J Neuroradiol 2021; 42 (02) 214-220
- 46 Lang S, Gölitz P, Struffert T. et al. 4D DSA for dynamic visualization of cerebral vasculature: A single-center experience in 26 cases. AJNR Am J Neuroradiol 2017; 38 (06) 1169-1176
- 47 Sandoval-Garcia C, Royalty K, Yang P. et al. 4D DSA a new technique for arteriovenous malformation evaluation: a feasibility study. J Neurointerv Surg 2016; 8 (03) 300-304
- 48 Su R, van der Sluijs PM, Chen Y. et al. CAVE: Cerebral artery-vein segmentation in digital subtraction angiography. Comput Med Imaging Graph 2024; 115: 102392
- 49 Kato N, Yuki I, Hataoka S. et al. 4D Digital subtraction angiography for the temporal flow visualization of intracranial aneurysms and vascular malformations. J Stroke Cerebrovasc Dis 2020; 29 (12) 105327
- 50 Srinivasan VM, Chintalapani G, Duckworth EA, Kan P. Application of 4-dimensional digital subtraction angiography for dural arteriovenous fistulas. World Neurosurg 2016; 96: 24-30
- 51 Marcus J, Schwarz J, Singh IP. et al. Spinal dural arteriovenous fistulas: a review. Curr Atheroscler Rep 2013; 15 (07) 335
- 52 Matsubara N, Miyachi S, Izumi T. et al. Usefulness of three-dimensional digital subtraction angiography in endovascular treatment of a spinal dural arteriovenous fistula. J Neurosurg Spine 2008; 8 (05) 462-467
- 53 Saposnik G, Bushnell C, Coutinho JM. et al.; American Heart Association Stroke Council; Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; Council on Cardiovascular and Stroke Nursing; and Council on Hypertension. Diagnosis and management of cerebral venous thrombosis: A Scientific Statement From the American Heart Association. Stroke 2024; 55 (03) e77-e90
- 54 West JL, Greeneway GP, Garner RM. et al. Correlation between angiographic stenosis and physiologic venous sinus outflow obstruction in idiopathic intracranial hypertension. J Neurointerv Surg 2019; 11 (01) 90-94
- 55 Pannell JS, Corey AS, Shih RY. et al.; Expert Panel on Neurological Imaging. ACR Appropriateness Criteria® Cerebrovascular Diseases-Stroke and Stroke-Related Conditions. J Am Coll Radiol 2024; 21 (6S) S21-S64
- 56 Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med 2016; 46 (01) 5-19
- 57 Evans NR, Tarkin JM, Buscombe JR, Markus HS, Rudd JHF, Warburton EA. PET imaging of the neurovascular interface in cerebrovascular disease. Nat Rev Neurol 2017; 13 (11) 676-688
- 58 Lee JJ, Metcalf N, Durbin TA. et al. Multi-tracer studies of brain oxygen and glucose metabolism using a time-of-flight positron emission tomography - computed tomography scanner. J Vis Exp 2024; (208) 10.3791/65510
- 59 Johnson KA, Gregas M, Becker JA. et al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 2007; 62 (03) 229-234
- 60 Gurol ME, Dierksen G, Betensky R. et al. Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy. Neurology 2012; 79 (04) 320-326
- 61 Greer DM, Kirschen MP, Lewis A. et al. Pediatric and adult brain death/death by Neurologic Criteria Consensus Guideline. Neurology 2023; 101 (24) 1112-1132
- 62 Zheng Y, Yang Y, Zhang Q. et al. Ultrasonic methods for brain imaging: Techniques and implications. IEEE Trans Biomed Eng 2022; 69 (11) 3526-3537
- 63 Demené C, Robin J, Dizeux A. et al. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients. Nat Biomed Eng 2021; 5 (03) 219-228
- 64 Robin J, Demené C, Heiles B. et al. In vivo adaptive focusing for clinical contrast-enhanced transcranial ultrasound imaging in human. Phys Med Biol 2023; 68 (02) 025019
- 65 Chavignon A, Hingot V, Orset C, Vivien D, Couture O. 3D transcranial ultrasound localization microscopy for discrimination between ischemic and hemorrhagic stroke in early phase. Sci Rep 2022; 12 (01) 14607
- 66 Na S, Zhang Y, Wang LV. Cross-ray ultrasound tomography and photoacoustic tomography of cerebral hemodynamics in rodents. Adv Sci (Weinh) 2022; 9 (25) e2201104
- 67 Nouhoum M, Ferrier J, Osmanski BF. et al. A functional ultrasound brain GPS for automatic vascular-based neuronavigation. Sci Rep 2021; 11 (01) 15197
- 68 Zhou S, Gao X, Park G. et al. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 2024; 629 (8013): 810-818
- 69 Zacharatos H, Hassan AE, Qureshi AI. Intravascular ultrasound: principles and cerebrovascular applications. AJNR Am J Neuroradiol 2010; 31 (04) 586-597
- 70 Kan P, Mokin M, Abla AA. et al. Utility of intravascular ultrasound in intracranial and extracranial neurointerventions: Experience at University at Buffalo Neurosurgery-Millard Fillmore Gates Circle Hospital. Neurosurg Focus 2012; 32 (01) E6
- 71 Pasarikovski CR, Ku JC, Priola SM, da Costa L, Yang VXD. Endovascular optical coherence tomography imaging in cerebrovascular disease. J Clin Neurosci 2020; 80: 30-37
- 72 Talebi S, Gai S, Sossin A, Zhu V, Tong E, Mofrad MRK. Deep learning for perfusion cerebral blood flow (CBF) and volume (CBV) predictions and diagnostics. Ann Biomed Eng 2024; 52 (06) 1568-1575
- 73 Nicolas-Jilwan M, Wintermark M. Automated brain perfusion imaging in acute ischemic stroke: Interpretation pearls and pitfalls. Stroke 2021; 52 (11) 3728-3738
- 74 Olthuis SGH, Pirson FAV, Pinckaers FME. et al.; MR CLEAN-LATE Investigators. Endovascular treatment versus no endovascular treatment after 6-24 h in patients with ischaemic stroke and collateral flow on CT angiography (MR CLEAN-LATE) in the Netherlands: a multicentre, open-label, blinded-endpoint, randomised, controlled, phase 3 trial. Lancet 2023; 401 (10385): 1371-1380
- 75 Nguyen TN, Abdalkader M, Nagel S. et al. Noncontrast computed tomography vs computed tomography perfusion or magnetic resonance imaging selection in late presentation of stroke with large-vessel occlusion. JAMA Neurol 2022; 79 (01) 22-31
- 76 Nguyen TN, Nogueira RG, Qureshi MM. et al. Noncontrast CT selected thrombectomy vs medical management for late-window anterior large vessel occlusion. Neurology 2024; 102 (10) e209324
- 77 Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: How we do it. Radiology 2018; 286 (01) 12-28
- 78 Vagal A, Wintermark M, Nael K. et al. Automated CT perfusion imaging for acute ischemic stroke: Pearls and pitfalls for real-world use. Neurology 2019; 93 (20) 888-898
- 79 Welker K, Boxerman J, Kalnin A, Kaufmann T, Shiroishi M, Wintermark M. American Society of Functional Neuroradiology MR Perfusion Standards and Practice Subcommittee of the ASFNR Clinical Practice Committee. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015; 36 (06) E41-E51
- 80 Shiroishi MS, Castellazzi G, Boxerman JL. et al. Principles of T2*-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging 2015; 41 (02) 296-313
- 81 Santarosa C, Castellano A, Conte GM. et al. Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis. Eur J Radiol 2016; 85 (06) 1147-1156
- 82 Huang D, Guo Y, Guan X. et al. Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment. J Cereb Blood Flow Metab 2023; 43 (02) 173-184
- 83 Glandorf J, Klimeš F, Voskrebenzev A. et al. Feasibility of flow-related enhancement brain perfusion MRI. PLoS ONE 2022; 17 (11) e0276912
- 84 Mertz L. Molecular imaging probes spy on the body's inner workings: miniaturized microscopes, microbubbles, 7- and 15-T scanners, diffusion-tensor MRI, and other molecular-imaging technologies are pushing molecular imaging into the future. IEEE Pulse 2013; 4 (01) 18-22
- 85 Saji H. In vivo molecular imaging. Biol Pharm Bull 2017; 40 (10) 1605-1615
- 86 Rowe SP, Pomper MG. Molecular imaging in oncology: Current impact and future directions. CA Cancer J Clin 2022; 72 (04) 333-352
- 87 Gilotra K, Swarna S, Mani R, Basem J, Dashti R. Role of artificial intelligence and machine learning in the diagnosis of cerebrovascular disease. Front Hum Neurosci 2023; 17: 1254417
- 88 Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg 2020; 12 (02) 156-164
- 89 Sheth SA, Lopez-Rivera V, Barman A. et al. Machine learning-enabled automated determination of acute ischemic core from computed tomography angiography. Stroke 2019; 50 (11) 3093-3100
- 90 Salman S, Gu Q, Sharma R. et al. Artificial intelligence and machine learning in aneurysmal subarachnoid hemorrhage: Future promises, perils, and practicalities. J Neurol Sci 2023; 454: 120832
- 91 Chen X, Lei Y, Su J. et al. A review of artificial intelligence in cerebrovascular disease imaging: Applications and challenges. Curr Neuropharmacol 2022; 20 (07) 1359-1382
- 92 Liu Y, Wen Z, Wang Y. et al. Artificial intelligence in ischemic stroke images: current applications and future directions. Front Neurol 2024; 15: 1418060