Synthesis, Table of Contents Synthesis DOI: 10.1055/a-2685-9083 Paper Published as part of the Special Issue in Honor of Prof. Franziska Schoenebeck, the 2025 Women in Chemistry Award Winner Desaturation of Amides via Bismuth Photocatalysis Authors Author Affiliations Byeongdo Roh 1 Department of Organometallic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz, 1, 45470 Mülheim an der Ruhr, Germany Josep Cornella 1 Department of Organometallic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz, 1, 45470 Mülheim an der Ruhr, Germany Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract Bismuth redox catalysis has been intensively developed in recent years, enabling diverse transformations that were previously thought to be achievable only through transition metal catalysis. In this study, we present the desaturation of amides to generate the enamides, an important structural motif in pharmaceuticals, via bismuth photocatalysis. The protocol involves a combination of unique mechanistic steps recently uncovered for bismuth thus allowing for the translation of a canonical transition metal–mediated transformation into a main group–based catalytic system. Keywords KeywordsBismuth - Low-valent bismuth - Bismuth redox catalysis - Bismuth photocatalysis - Desaturation - Amides Full Text References References 1a Flatt B, Martin R, Wang TL. et al. J Med Chem 2009; 52: 904 1b Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JMG, Garcia-Garcia A. Cancer Treat Rev 2009; 35: 707 1c Fu J, Si P, Zheng M. et al. Bioorg Med Chem Lett 2012; 22: 6848 1d Poulsen TB. Acc Chem Res 1830; 2021: 54 2a Courant T, Dagousset G, Masson G. Synthesis 2015; 47: 1799 2b Beltran F, Miesch L. Synthesis 2020; 52: 2497 2c Bouchet D, Varlet T, Masson G. Acc Chem Res 2022; 55: 3265 For selected examples for desaturation via C–H activation strategies, see: 3a Bolig AD, Brookhart M. J Am Chem Soc 2007; 129: 14544 3b Voica A-F, Mendoza A, Gutekunst WR, Fraga JO, Baran PS. Nat Chem 2012; 4: 629 3c Bheeter CB, Jin R, Bera JK, Dixneuf PH, Doucet H. Adv Synth Catal 2014; 356: 119 3d Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J Am Chem Soc 2018; 140: 2465 3e Li G, Kates PA, Dilger AK, Cheng PT, Ewing WR, Groves JT. ACS Catal 2019; 9: 9513 3f Huang L, Bismuto A, Rath SA, Trapp N, Morandi B. Angew Chem, Int Ed 2021; 60: 7290 3g Spieß P, Berger M, Kaiser D, Maulide N. J Am Chem Soc 2021; 143: 10524 3h Xia Y, Jana K, Studer A. Chem – Eur J 2021; 27: 16621 3i Stateman LM, Dare RM, Paneque AN, Nagib DA. Chem 2022; 8: 210 3j Yang S, Fan H, Xie L, Dong G, Chen M. Org Lett 2022; 24: 6460 3k Wang C, Azofra LM, Dam P. et al. ACS Catal 2022; 12: 8868 3l Li X, Cheng Z, Liu J, Zhang Z, Song S, Jiao N. Chem Sci 2022; 13: 9056-9061 3m Ritu, Kolb D, Jain N, König B. Adv Synth Catal 2023; 365: 605 3n An S, Lai G, Liu WH. Chem Sci 2024; 15: 15385 3o Zhao C, Gao R, Ma W. et al. Nat Commun 2024; 15: 4329 3p Novaes LFT, Ho JSK, Mao K, Villemure E, Terrett JA, Lin S. J Am Chem Soc 2024; 146: 22982 For recent reviews, see: 4a Lipshultz JM, Li G, Radosevich AT. J Am Chem Soc 2021; 143: 1699 4b Moon HW, Cornella J. ACS Catal 2022; 12: 1382 4c Mato M, Cornella J. Angew Chem, Int Ed 2024; 63: e202315046 5a Wang F, Planas O, Cornella J. J Am Chem Soc 2019; 141: 4235 5b Pang Y, Leutzsch M, Nöthling N, Cornella J. J Am Chem Soc 2020; 142: 19473 5c Pang Y, Leutzsch M, Nöthling N, Katzenburg F, Cornella J. J Am Chem Soc 2021; 143: 12487 5d Mato M, Spinnato D, Leutzsch M, Moon HW, Reijerse EJ, Cornella J. Nat Chem 2023; 15: 1138 5e Mato M, Bruzzese PC, Takahashi F. et al. J Am Chem Soc 2023; 145: 18742 5f Moon HW, Wang F, Bhattacharyya K. et al. Angew Chem, Int Ed 2023; 62: e202313578 5g Tsuruta T, Spinnato D, Moon HW, Leutzsch, Cornella J. J Am Chem Soc 2023; 145: 25538 5h Ni S, Spinnato D, Cornella J. J Am Chem Soc 2024; 146: 22140 5i Beland V, Nöthling N, Leutzsch M, Cornella J. J Am Chem Soc 2024; 146: 25409 5j Mato M, Stamoulis A, Cleto-Bruzzese P, Cornella J. Angew Chem, Int Ed 2024; 64: e202418367 5k Moon HW, Nöthling N, Leutzsch M, Kuziola J, Cornella J. Angew Chem, Int Ed 2024; 64: e202417864 5l Stamoulis A, Mato M, Cleto Bruzzese P. et al. J Am Chem Soc 2025; 147: 6037 6a Planas O, Wang F, Leutszch M, Cornella J. Science 2020; 367: 313 6b Planas O, Peciukenas V, Cornella J. J Am Chem Soc 2020; 142: 11382 6c Planas O, Peciukenas V, Leutzsch M, Nöthling N, Pantazis D, Cornella J. J Am Chem Soc 2022; 144: 14489 6d Faber T, Engelhardt S, Cornella J. Angew Chem, Int Ed 2025; e202424698 7a Magre M, Cornella J. J Am Chem Soc 2021; 143: 21497 7b Yang X, Kuziola J, Beland V, Leutzsch M, Bures J, Cornella J. Angew Chem, Int Ed 2023; 62: e202306447 8 Šimon P, De Proft F, Jambor R, Růžička A, Dostál L. Angew Chem, Int Ed 2010; 49: 5468 9 Hejda M, Jirásko R, Růžička A, Jambor R, Dostál L. Organometallics 2020; 39: 4320 10 Guo W, Wang Q, Zhu J. Chem Soc Rev 2021; 50: 7359 11 Yi L, Kong D, Kale AP. et al. Angew Chem, Int Ed 2024; 63: e202411961 12a Constantin T, Zanini M, Regni A, Sheikh NS, Julia F, Leonori D. Science 2020; 367: 1021 12b Juliá F, Constantin T, Leonori D. Chem Rev 2022; 122: 2292 Supplementary Material Supplementary Material Supplementary Material (PDF) (opens in new window)