Subscribe to RSS
DOI: 10.1055/a-2688-6741
Left Atrial Spontaneous Echo Contrast: Pathogenesis, Detection, and Modelling
Funding Information P.M. was funded by the Engineering and Physical Sciences Research Council (EPSRC) Research Council, part of the EPSRC CDT (grant reference: EP/R513064/1). S.W. acknowledges support from the British Heart Foundation (FS/20/26/34952). This work was supported by the Wellcome/EPSRC Centre for Medical Engineering (WT203148/Z/16/Z) at King's College London. The funders had no role in the preparation, review, or approval of the manuscript.

Abstract
The left atrium (LA) is particularly susceptible to blood stasis in conditions like atrial fibrillation (AF), which can lead to thrombus formation, especially in the left atrial appendage. Spontaneous echo contrast (SEC) in the LA, detectable via transesophageal echocardiography (TEE), occurs when blood flow slows, and has been strongly associated with thrombus formation and increased stroke risk, making it an important prognostic indicator. The underlying mechanism of LA SEC is thought to involve echogenic red blood cell aggregates formed due to low shear rates, but the roles of platelets and the coagulation cascade remain unclear. Given that LA SEC is considered a precursor to thrombus formation, enhancing our understanding of its pathophysiology may offer insights into thrombogenesis inside the LA, which to date remains poorly understood. The development of noninvasive diagnostic tools for LA SEC is critical, as TEE, whereas the gold standard is invasive and not universally accessible. Promising alternatives, such as harmonic transthoracic echocardiography and biphasic computed tomography imaging, have shown potential in diagnosing LA SEC and assessing stroke risk in AF patients. Additionally, emerging technologies like computational modelling are offering new avenues for understanding the mechanisms of LA SEC, with blood flow simulations providing valuable insights into its formation. These advancements could improve diagnostic capabilities and stroke risk stratification in AF patients, highlighting the need for further research to fully elucidate the clinical implications of LA SEC.
Keywords
spontaneous echo contrast - left atrium - red blood cell aggregation - transesophageal echocardiography - modellingThe review process for this paper was fully handled by Christian Weber, Editor in Chief.
Publication History
Received: 16 May 2025
Accepted: 21 August 2025
Accepted Manuscript online:
02 September 2025
Article published online:
09 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Black IW. Spontaneous echo contrast: where there's smoke there's fire. Echocardiography 2000; 17 (04) 373-382
- 2 Zotz RJ, Müller M, Genth-Zotz S, Darius H. Spontaneous echo contrast caused by platelet and leukocyte aggregates?. Stroke 2001; 32 (05) 1127-1133
- 3 Kearney K, Mahony C. Effect of aspirin on spontaneous contrast in the brachial veins of normal subjects. Am J Cardiol 1995; 75 (14) 924-928
- 4 Fatkin D, Herbert E, Feneley MP. Hematologic correlates of spontaneous echo contrast in patients with atrial fibrillation and implications for thromboembolic risk. Am J Cardiol 1994; 73 (09) 672-676
- 5 Leung DYC, Black IW, Cranney GB, Hopkins AP, Walsh WF. Prognostic implications of left atrial spontaneous echo contrast in nonvalvular atrial fibrillation. J Am Coll Cardiol 1994; 24 (03) 755-762
- 6 Ito T, Suwa M. Left atrial spontaneous echo contrast: relationship with clinical and echocardiographic parameters. Echo Res Pract 2019; 6 (02) R65-R73
- 7 Fatkin D, Loupas T, Low J, Feneley M. Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood. Circulation 1997; 96 (03) 889-896
- 8 Black IW, Chesterman CN, Hopkins AP, Lee LCL, Chong BH, Walsh WF. Hematologic correlates of left atrial spontaneous echo contrast and thromboembolism in nonvalvular atrial fibrillation. J Am Coll Cardiol 1993; 21 (02) 451-457
- 9 Bosi GM, Cook A, Rai R. et al. Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk. Front Cardiovasc Med 2018; 5: 34
- 10 Manning WJ, Silverman DI, Keighley CS, Oettgen P, Douglas PS. Transesophageal echocardiographically facilitated early cardioversion from atrial fibrillation using short-term anticoagulation: final results of a prospective 4.5-year study. J Am Coll Cardiol 1995; 25 (06) 1354-1361
- 11 Ding B, Zhou J, Dai Y, He L, Zou C. Predictive indicators in peripheral blood and left atrium blood for left atrial spontaneous echo contrast in atrial fibrillation patients. BMC Cardiovasc Disord 2024; 24 (01) 484
- 12 Hilberath JN, Oakes DA, Shernan SK, Bulwer BE, D'Ambra MN, Eltzschig HK. Safety of transesophageal echocardiography. J Am Soc Echocardiogr 2010; 23 (11) 1115-1127 , quiz 1220–1221
- 13 Daniel WG, Mügge A. Transesophageal echocardiography. N Engl J Med 1995; 332 (19) 1268-1279
- 14 Akamatsu K, Ito T, Ozeki M, Miyamura M, Sohmiya K, Hoshiga M. Left atrial spontaneous echo contrast occurring in patients with low CHADS2 or CHA2DS2-VASc scores. Cardiovasc Ultrasound 2020; 18 (01) 31
- 15 Fatkin D, Loupas T, Jacobs N, Feneley MP. Quantification of blood echogenicity: evaluation of a semiquantitative method of grading spontaneous echo contrast. Ultrasound Med Biol 1995; 21 (09) 1191-1198
- 16 Watanabe T, Shinoda Y, Ikeoka K. et al. Dabigatran exhibits low intensity of left atrial spontaneous echo contrast in patients with nonvalvular atrial fibrillation as compared with warfarin. Heart Vessels 2017; 32 (03) 326-332
- 17 Wheeler R, Masani ND. The role of echocardiography in the management of atrial fibrillation. Eur J Echocardiogr 2011; 12 (10) i33-i38
- 18 Papadopoulos CH, Oikonomidis D, Lazaris E, Nihoyannopoulos P. Echocardiography and cardiac arrhythmias. Hellenic J Cardiol 2018; 59 (03) 140-149
- 19 Kupczyńska K, Kasprzak JD, Michalski B, Lipiec P. Prognostic significance of spontaneous echocardiographic contrast detected by transthoracic and transesophageal echocardiography in the era of harmonic imaging. Arch Med Sci 2013; 9 (05) 808-814
- 20 Ha JW, Chung N, Kang SM. et al. Enhanced detection of left atrial spontaneous echo contrast by transthoracic harmonic imaging in mitral stenosis. J Am Soc Echocardiogr 2000; 13 (09) 849-854
- 21 He CL, Wang ZQ, Jia CF. et al. Accuracy of cardiac CT in evaluating severity of left atrial appendage spontaneous echo contrast: comparison with transesophageal echocardiography. Int J Cardiovasc Imaging 2018; 34 (07) 1147-1154
- 22 Kim SC, Chun EJ, Choi SI. et al. Differentiation between spontaneous echocardiographic contrast and left atrial appendage thrombus in patients with suspected embolic stroke using two-phase multidetector computed tomography. Am J Cardiol 2010; 106 (08) 1174-1181
- 23 Ammash N, Konik EA, McBane RD. et al. Left atrial blood stasis and Von Willebrand factor-ADAMTS13 homeostasis in atrial fibrillation. Arterioscler Thromb Vasc Biol 2011; 31 (11) 2760-2766
- 24 Ito T, Suwa M, Nakamura T, Miyazaki S, Kobashi A, Kitaura Y. Quantification of left atrial appendage spontaneous echo contrast in patients with chronic nonalvular atrial fibrillation. J Cardiol 2001; 37 (06) 325-333
- 25 Fatkin D, Kelly RP, Feneley MP. Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo. J Am Coll Cardiol 1994; 23 (04) 961-969
- 26 Daniel WG, Nellessen U, Schröder E. et al. Left atrial spontaneous echo contrast in mitral valve disease: an indicator for an increased thromboembolic risk. J Am Coll Cardiol 1988; 11 (06) 1204-1211
- 27 Soulat-Dufour L, Simon T, Lang S. et al. Characterization of left atrial appendage geometry and function using three-dimensional transesophageal echocardiography in patients in atrial fibrillation. Arch Cardiovasc Dis Suppl 2023; 15 (03) 265
- 28 Ma CS, Sun SK, Wang L, Zhou BY, Dong FL. The value of left atrial longitudinal strain in evaluating left atrial appendage spontaneous echo contrast in non-valvular atrial fibrillation. Front Cardiovasc Med 2023; 10: 1090139
- 29 Karatasakis GT, Gotsis AC, Cokkinos DV. Influence of mitral regurgitation on left atrial thrombus and spontaneous echocardiographic contrast in patients with rheumatic mitral valve disease. Am J Cardiol 1995; 76 (04) 279-281
- 30 Rastegar R, Harnick DJ, Weidemann P. et al. Spontaneous echo contrast videodensity is flow-related and is dependent on the relative concentrations of fibrinogen and red blood cells. J Am Coll Cardiol 2003; 41 (04) 603-610
- 31 Lominadze D, Dean WL. Involvement of fibrinogen specific binding in erythrocyte aggregation. FEBS Lett 2002; 517 (1–3): 41-44
- 32 Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J 2004; 87 (06) 4259-4270
- 33 Yu FTH, Armstrong JK, Tripette J, Meiselman HJ, Cloutier G. A local increase in red blood cell aggregation can trigger deep vein thrombosis: evidence based on quantitative cellular ultrasound imaging. J Thromb Haemost 2011; 9 (03) 481-488
- 34 Weisel JW, Litvinov RI. Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost 2019; 17 (02) 271-282
- 35 Hald EM, Løchen ML, Lappegård J. et al. Red cell distribution width and risk of atrial fibrillation and subsequent thromboembolism: the Tromsø study. TH Open 2020; 4 (03) e280-e287
- 36 Bosek M, Wybranowski T, Napiórkowska-Mastalerz M. et al. The impact of COVID-19 on cellular factors influencing red blood cell aggregation examined in dextran: possible causes and consequences. Int J Mol Sci 2023; 24 (19) 14952
- 37 Milusev A, Rieben R, Sorvillo N. The endothelial glycocalyx: a possible therapeutic target in cardiovascular disorders. Front Cardiovasc Med 2022; 9: 897087
- 38 Britten MW, Lümers L, Tominaga K, Peters J, Dirkmann D. Glycocalyx components affect platelet function, whole blood coagulation, and fibrinolysis: an in vitro study suggesting a link to trauma-induced coagulopathy. BMC Anesthesiol 2021; 21 (01) 83
- 39 Ferreira G, Taylor A, Mensah SA. Deciphering the triad of endothelial glycocalyx, von Willebrand factor, and P-selectin in inflammation-induced coagulation. Front Cell Dev Biol 2024; 12: 1372355
- 40 Patterson EK, Cepinskas G, Fraser DD. Endothelial glycocalyx degradation in critical illness and injury. Front Med (Lausanne) 2022; 9: 898592
- 41 Bennett JS. Platelet-fibrinogen interactions. Ann N Y Acad Sci 2001; 936: 340-354
- 42 Di Lecce VN, Loffredo L, Fimognari FL, Cangemi R, Violi F. Fibrinogen as predictor of ischemic stroke in patients with non-valvular atrial fibrillation. J Thromb Haemost 2003; 1 (11) 2453-2455
- 43 Sohara H, Amitani S, Kurose M, Miyahara K. Atrial fibrillation activates platelets and coagulation in a time-dependent manner: a study in patients with paroxysmal atrial fibrillation. J Am Coll Cardiol 1997; 29 (01) 106-112
- 44 Lip GY, Lowe GD, Rumley A, Dunn FG. Fibrinogen and fibrin D-dimer levels in paroxysmal atrial fibrillation: evidence for intermediate elevated levels of intravascular thrombogenesis. Am Heart J 1996; 131 (04) 724-730
- 45 Kelesoglu S, Elcık D, Zengin I. et al. Association of spontaneous echo contrast with Systemic Immune Inflammation Index in patients with mitral stenosis. Rev Port Cardiol 2022; 41 (12) 1001-1008
- 46 Inoue T, Suzuki M, Namiki A, Hirai H, Sugi K. Relationship between spontaneous echo contrast in the thoracic aorta and plasma von Willebrand factor. J Med Ultrason 2006; 33 (04) 225-230
- 47 Thambidorai SK, Parakh K, Martin DO. et al. Relation of C-reactive protein correlates with risk of thromboembolism in patients with atrial fibrillation. Am J Cardiol 2004; 94 (06) 805-807
- 48 Cianfrocca C, Loricchio ML, Pelliccia F. et al. C-reactive protein and left atrial appendage velocity are independent determinants of the risk of thrombogenesis in patients with atrial fibrillation. Int J Cardiol 2010; 142 (01) 22-28
- 49 Kadoya Y, Yamano M, Matoba S. Sludge in a giant left atrium. BMJ Case Rep 2016; 2016: bcr2016217660
- 50 Kim YG, Choi JI, Kim MN. et al. Non-vitamin K antagonist oral anticoagulants versus warfarin for the prevention of spontaneous echo-contrast and thrombus in patients with atrial fibrillation or flutter undergoing cardioversion: a trans-esophageal echocardiography study. PLoS One 2018; 13 (01) e0191648
- 51 Senst B, Tadi P, Basit H, Jan A. Hypercoagulability. Stat Pearls 2024. Accessed February 7, 2024 at: http://www.ncbi.nlm.nih.gov/books/NBK538251/
- 52 Wazni OM, Tsao HM, Chen SA. et al. Cardiovascular imaging in the management of atrial fibrillation. J Am Coll Cardiol 2006; 48 (10) 2077-2084
- 53 Differentiating spontaneous echo contrast, sludge, and thrombus in the left atrial appendage: can ultrasound enhancing agents help? Posada-Martinez; 2019. Echocardiography. Wiley Online Library. Accessed December 20, 2024 at: https://onlinelibrary.wiley.com/doi/abs/10.1111/echo.14405
- 54 Cui J, Xia SJ, Tang RB. et al. Morphology and location of thrombus and sludge in patients with non-valvular atrial fibrillation. BMC Cardiovasc Disord 2024; 24 (01) 398
- 55 Kosmalska K, Gilis-Malinowska N, Rzyman M, Danilowicz-Szymanowicz L, Fijalkowski M. Risk of death and ischemic stroke in patients with atrial arrhythmia and thrombus or sludge in left atrial appendage at one-year follow-up. J Clin Med 2022; 11 (04) 1128
- 56 Lip GYH, Hammerstingl C, Marin F. et al; X-TRA study and CLOT-AF registry investigators. Left atrial thrombus resolution in atrial fibrillation or flutter: results of a prospective study with rivaroxaban (X-TRA) and a retrospective observational registry providing baseline data (CLOT-AF). Am Heart J 2016; 178: 126-134
- 57 Incidence and predictors of left atrial thrombus prior to catheter ablation of atrial fibrillation. SCHERR; 2009. J Cardiovasc Electrophysiol. Wiley Online Library. Accessed July 29, 2024 at: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-8167.2008.01336.x
- 58 Goyal SK, Hyder S, Liu S, Vannan MA. Isoproterenol-assisted differentiation between sludge and organized thrombus to guide left atrial appendage occlusion. JACC Clin Electrophysiol 2023; 9 (01) 111-116
- 59 Reisner SA, Rinkevich D, Markiewicz W, Adler Z, Milo S. Spontaneous echocardiographic contrast with the carbomedics mitral valve prosthesis. Am J Cardiol 1992; 70 (18) 1497-1500
- 60 Chimowitz MI, DeGeorgia MA, Poole RM, Hepner A, Armstrong WM. Left atrial spontaneous echo contrast is highly associated with previous stroke in patients with atrial fibrillation or mitral stenosis. Stroke 1993; 24 (07) 1015-1019
- 61 Wang L, Wang Z, Fang R, Li ZY. Evaluation of stroke risk in patients with atrial fibrillation using morphological and hemodynamic characteristics. Front Cardiovasc Med 2022; 9: 842364
- 62 Miki Y, Uchida Y, Tanaka A. et al. Clinical significance of the left atrial appendage orifice area. Intern Med 2022; 61 (12) 1801-1807
- 63 Sadanandan S, Sherrid MV. Clinical and echocardiographic characteristics of left atrial spontaneous echo contrast in sinus rhythm. J Am Coll Cardiol 2000; 35 (07) 1932-1938
- 64 Klein AL, Grimm RA, Black IW. et al. Cardioversion guided by transesophageal echocardiography: the ACUTE Pilot Study. A randomized, controlled trial. Assessment of Cardioversion Using Transesophageal Echocardiography. Ann Intern Med 1997; 126 (03) 200-209
- 65 Kamel H, Okin PM, Elkind MSV, Iadecola C. Atrial fibrillation and mechanisms of stroke. Stroke 2016; 47 (03) 895-900
- 66 Choi SE, Sagris D, Hill A, Lip GYH, Abdul-Rahim AH. Atrial fibrillation and stroke. Expert Rev Cardiovasc Ther 2023; 21 (01) 35-56
- 67 Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg 1996; 61 (02) 755-759
- 68 Sulague RM, Whitham T, Danganan LML. et al. The left atrial appendage and atrial fibrillation—a contemporary review. J Clin Med 2023; 12 (21) 6909
- 69 Lip GYH, Nieuwlaat R, Pisters R, Lane DA, Crijns HJGM. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on Atrial Fibrillation. Chest 2010; 137 (02) 263-272
- 70 Zhao Y, Ji L, Liu J. et al. Intensity of left atrial spontaneous echo contrast as a correlate for stroke risk stratification in patients with nonvalvular atrial fibrillation. Sci Rep 2016; 6 (01) 27650
- 71 Van Gelder IC, Rienstra M, Bunting KV. et al; ESC Scientific Document Group. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2024; 45 (36) 3314-3414
- 72 Patel SV, Flaker G. Is early cardioversion for atrial fibrillation safe in patients with spontaneous echocardiographic contrast?. Clin Cardiol 2008; 31 (04) 148-152
- 73 Maltagliati A, Galli CA, Tamborini G. et al. Usefulness of transoesophageal echocardiography before cardioversion in patients with atrial fibrillation and different anticoagulant regimens. Heart 2006; 92 (07) 933-938
- 74 Gedikli Ö, Mohanty S, Trivedi C. et al. Impact of dense “smoke” detected on transesophageal echocardiography on stroke risk in patients with atrial fibrillation undergoing catheter ablation. Heart Rhythm 2019; 16 (03) 351-357
- 75 Andrade JG, Macle L, Nattel S, Verma A, Cairns J. Contemporary atrial fibrillation management: a comparison of the current AHA/ACC/HRS, CCS, and ESC guidelines. Can J Cardiol 2017; 33 (08) 965-976
- 76 Bernstein NE, Demopoulos LA, Tunick PA, Rosenzweig BP, Kronzon I. Correlates of spontaneous echo contrast in patients with mitral stenosis and normal sinus rhythm. Am Heart J 1994; 128 (02) 287-292
- 77 Saidi SJ, Motamedi MHK. Incidence and factors influencing left atrial clot in patients with mitral stenosis and normal sinus rhythm. Heart 2004; 90 (11) 1342-1343
- 78 Lancellotti P, Pibarot P, Chambers J. et al. Recommendations for the imaging assessment of prosthetic heart valves: a report from the European Association of Cardiovascular Imaging endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2016; 17 (06) 589-590
- 79 Sel K, Osman D, Zare F. et al. Building digital twins for cardiovascular health: from principles to clinical impact. J Am Heart Assoc 2024; 13 (19) e031981
- 80 Niederer SA, Lumens J, Trayanova NA. Computational models in cardiology. Nat Rev Cardiol 2019; 16 (02) 100-111
- 81 Corral-Acero J, Margara F, Marciniak M. et al. The 'Digital Twin' to enable the vision of precision cardiology. Eur Heart J 2020; 41 (48) 4556-4564
- 82 Zingaro A, Ahmad Z, Kholmovski E. et al. A comprehensive stroke risk assessment by combining atrial computational fluid dynamics simulations and functional patient data. Sci Rep 2024; 14 (01) 9515
- 83 Pons MI, Mill J, Fernandez-Quilez A. et al. Joint analysis of morphological parameters and in silico haemodynamics of the left atrial appendage for thrombogenic risk assessment. J Interv Cardiol 2022; 2022: 9125224
- 84 Khalili E, Daversin-Catty C, Olivares AL, Mill J, Camara O, Valen-Sendstad K. On the importance of fundamental computational fluid dynamics toward a robust and reliable model of left atrial flows. Int J Numer Methods Biomed Eng 2024; 40 (04) e3804
- 85 Dueñas-Pamplona J, García JG, Sierra-Pallares J, Ferrera C, Agujetas R, López-Mínguez JR. A comprehensive comparison of various patient-specific CFD models of the left atrium for atrial fibrillation patients. Comput Biol Med 2021; 133: 104423
- 86 Qureshi A, Lip GYH, Nordsletten DA, Williams SE, Aslanidi O, de Vecchi A. Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke. Front Cardiovasc Med 2023; 9: 1074562
- 87 Lip GYH, Halperin JL. Improving stroke risk stratification in atrial fibrillation. Am J Med 2010; 123 (06) 484-488
- 88 Qureshi A, Balmus M, Nechipurenko D. et al. Left atrial appendage morphology impacts thrombus formation risks in multi-physics atrial models. Comput Cardiol 2021; 48: 1-4
- 89 Qureshi A, Melidoro P, Balmus M. et al. MRI-based modelling of left atrial flow and coagulation to predict risk of thrombogenesis in atrial fibrillation. Med Image Anal 2025; 101: 103475
- 90 Smine Z, Melidoro P, Qureshi A. et al. Global sensitivity analysis of thrombus formation in the left atrial appendage of atrial fibrillation patients. In: Camara O, Puyol-Antón E, Sermesant M. et al., eds. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. Springer Nature Switzerland; 2024: 55-65
- 91 Qureshi A, Balmus M, Lip GYH. et al. Mechanistic modelling of Virchows triad to assess thrombogenicity and stroke risk in atrial fibrillation patients. Eur Heart J Digit Health 2022; 3 (04) 2788
- 92 Lee CA, Paeng DG. Numerical simulation of spatiotemporal red blood cell aggregation under sinusoidal pulsatile flow. Sci Rep 2021; 11 (01) 9977
- 93 Maung Ye SS, Kim S. A mechanistic model of cross-bridge migration in RBC aggregation and disaggregation. Front Bioeng Biotechnol 2022; 10: 1049878
- 94 Lyras KG, Lee J. Haemodynamic analysis using multiphase flow dynamics in tubular lesions. Comput Methods Programs Biomed 2022; 220: 106780
- 95 Gonzalo A, García-Villalba M, Rossini L. et al. Non-Newtonian blood rheology impacts left atrial stasis in patient-specific simulations. Int J Numer Methods Biomed Eng 2022; 38 (06) e3597
- 96 Arzani A. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?. J R Soc Interface 2018; 15 (146) 20180486
- 97 Zhang Z, Zhu J, Wu M, Neidlin M, Wu WT, Wu P. Computational modeling of hemodynamics and risk of thrombosis in the left atrial appendage using patient-specific blood viscosity and boundary conditions at the mitral valve. Biomech Model Mechanobiol 2023; 22 (04) 1447-1457
- 98 Melidoro P, Sultan ARA, Qureshi A. et al. Enhancing stroke risk stratification in atrial fibrillation through non-Newtonian blood modelling and Gaussian process emulation. J Physiol 2024;
- 99 Melidoro P, Sabry M, Sultan ARA. et al. Comparing left atrial spontaneous echo contrast intensity with Gaussian process emulator predictions. In: Camara O, Puyol-Antón E, Sermesant M. et al., eds. Statistical Atlases and Computational Models of the Heart. Workshop, CMRxRecon and MBAS Challenge Papers. Springer Nature Switzerland; 2025: 443-452
- 100 Qureshi A, Balmus M, Ogbomo-Harmitt S. et al. Modelling blood flow and biochemical reactions underlying thrombogenesis in atrial fibrillation. In: Bernard O, Clarysse P, Duchateau N, Ohayon J, Viallon M. eds. Functional Imaging and Modeling of the Heart. Springer Nature Switzerland; 2023: 435-444
- 101 Qureshi A, Melidoro P, Balmus M. et al. The impact of aging and atrial fibrillation on thrombus formation in-silico. Eur Heart J 2023; 44 (02) 2945
- 102 Melidoro P, Williams SE, Lip GYH, Klis M, Aslanidi O, De Vecchi A. Computational modelling of thrombogenesis during cryoablation ablation in the left atrium. In: Chabiniok R, Zou Q, Hussain T, Nguyen HH, Zaha VG, Gusseva M. eds. Functional Imaging and Modeling of the Heart. Springer Nature Switzerland; 2025: 60-71
- 103 Kawakami H, Ramkumar S, Pathan F, Wright L, Marwick TH. Use of echocardiography to stratify the risk of atrial fibrillation: comparison of left atrial and ventricular strain. Eur Heart J Cardiovasc Imaging 2020; 21 (04) 399-407
- 104 Zeng D, Chang S, Zhang X. et al. Machine learning model for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients based on multimodal echocardiographic parameters. 2024: 10.24305639
- 105 Pongratz G, Brandt-Pohlmann M, Henneke KH. et al. Platelet activation in embolic and preembolic status of patients with nonrheumatic atrial fibrillation. Chest 1997; 111 (04) 929-933
- 106 Akpek M, Kaya MG, Yarlioglues M. et al. Relationship between platelet indices and spontaneous echo contrast in patients with mitral stenosis. Eur J Echocardiogr 2011; 12 (11) 865-870
- 107 Peverill RE, Graham R, Gelman J, Yates LA, Harper RW, Smolich JJ. Haematologic determinants of left atrial spontaneous echo contrast in mitral stenosis. Int J Cardiol 2001; 81 (2–3): 235-242
- 108 Briley DP, Giraud GD, Beamer NB. et al. Spontaneous echo contrast and hemorheologic abnormalities in cerebrovascular disease. Stroke 1994; 25 (08) 1564-1569
- 109 Hoffmann R, Lambertz H, Kreis A, Hanrath P. Failure of trifluoperazine to resolve spontaneous echo contrast evaluated by transesophageal echocardiography. Am J Cardiol 1990; 66 (05) 648-650
- 110 Black IW, Hopkins AP, Lee LCL, Walsh WF. Left atrial spontaneous echo contrast: a clinical and echocardiographic analysis. J Am Coll Cardiol 1991; 18 (02) 398-404