Subscribe to RSS
DOI: 10.1055/a-2691-6206
Factors Influencing Glucocorticoid Treatment Response: Mechanism-Based Strategies to Overcome Glucocorticoid Resistance and Restore GRα Function
Authors

Abstract
Glucocorticoids (GCs) remain central to managing dysregulated systemic inflammation in critical illness, yet therapeutic response varies widely due to multifactorial glucocorticoid resistance (GCR). This chapter provides a translational framework to guide clinicians in identifying and overcoming GCR, with a central emphasis on restoring glucocorticoid receptor α (GRα) function. Mechanisms of resistance include reduced GRα expression, GRβ dominance, impaired nuclear translocation, oxidative stress, mitochondrial dysfunction, micronutrient depletion, and epigenetic suppression. Pharmacokinetic and pharmacodynamic barriers—such as suboptimal dosing, impaired tissue penetration, accelerated clearance, erratic dosing schedules, and premature tapering—further compromise GRα engagement and treatment efficacy. In addition, interindividual variability in GR responsiveness is shaped by genetic polymorphisms, isoform balance, and local tissue conditions, compounded by up to 10-fold variability in circulating drug levels within the same patient. This chapter outlines evidence-based strategies to optimize GC therapy, including dose refinement, continuous infusion protocols, biomarker-guided escalation, and structured tapering. Adjunctive therapies—such as antioxidants, micronutrients, probiotics, and melatonin—are also highlighted for their role in enhancing mitochondrial resilience, redox stability, and GRα signaling across key regulatory phases. Importantly, many of these disruptions—whether arising from mitochondrial dysfunction, epigenetic changes, or intestinal dysbiosis—converge on shared molecular pathways such as nuclear factor kappa-B (NF-κB) activation, mitogen-activated protein kinase (MAPK) signaling, histone deacetylase 2 (HDAC2) inhibition, and oxidative stress, all of which compromise GRα function across systems. Recognizing this mechanistic convergence helps explain the multisystem nature of steroid resistance. It supports a unified therapeutic approach that targets oxidative stress, restores mitochondrial function, modulates the microbiome, and reinforces epigenetic regulation—working together to preserve GRα signaling across affected systems. While this framework is grounded in mechanistic and translational evidence, its application in clinical practice—including tapering strategies, biomarker thresholds, and adjunctive therapies—requires validation in randomized controlled trials.
Keywords
critical illness - glucocorticoid receptor-α - glucocorticoid resistance - homeostatic correction - mitochondrial dysfunction - systemic inflammationNote
A comprehensive literature review was conducted using the Consensus database and Google Scholar to identify relevant articles published between 1995 and 2025. Manual screening of references from key review articles and clinical guidelines was also performed to ensure completeness and relevance to this translational synthesis.
Publication History
Received: 30 April 2025
Accepted: 28 August 2025
Accepted Manuscript online:
28 August 2025
Article published online:
16 September 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Meduri GU. Glucocorticoids and GRα signaling in critical illness: phase-specific homeostatic corrections across systems. Semin Respir Crit Care Med 2025 (e-pub ahead of print)
- 2 Siebig S, Meinel A, Rogler G. et al. Decreased cytosolic glucocorticoid receptor levels in critically ill patients. Anaesth Intensive Care 2010; 38 (01) 133-140
- 3 van den Akker EL, Koper JW, Joosten K. et al. Glucocorticoid receptor mRNA levels are selectively decreased in neutrophils of children with sepsis. Intensive Care Med 2009; 35 (07) 1247-1254
- 4 Indyk JA, Candido-Vitto C, Wolf IM. et al. Reduced glucocorticoid receptor protein expression in children with critical illness. Horm Res Paediatr 2013; 79: 169-178
- 5 Ledderose C, Möhnle P, Limbeck E. et al. Corticosteroid resistance in sepsis is influenced by microRNA-124–induced downregulation of glucocorticoid receptor-α. Crit Care Med 2012; 40 (10) 2745-2753
- 6 Vassiliou AG, Floros G, Jahaj E. et al. Decreased glucocorticoid receptor expression during critical illness. Eur J Clin Invest 2019; 49 (04) e13073
- 7 Bergquist M, Nurkkala M, Rylander C, Kristiansson E, Hedenstierna G, Lindholm C. Expression of the glucocorticoid receptor is decreased in experimental Staphylococcus aureus sepsis. J Infect 2013; 67 (06) 574-583
- 8 Abraham MN, Jimenez DM, Fernandes TD, Deutschman CS. Cecal ligation and puncture alters glucocorticoid receptor expression. Crit Care Med 2018; 46 (08) e797-e804
- 9 Téblick A, Van Dyck L, Van Aerde N. et al. Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: A prospective, observational, cross-sectional human and two translational mouse studies. EBioMedicine 2022; 80: 104057
- 10 Peeters RP, Hagendorf A, Vanhorebeek I. et al. Tissue mRNA expression of the glucocorticoid receptor and its splice variants in fatal critical illness. Clin Endocrinol (Oxf) 2009; 71 (01) 145-153
- 11 Jenniskens M, Weckx R, Dufour T. et al. The hepatic glucocorticoid receptor is crucial for cortisol homeostasis and sepsis survival in humans and male mice. Endocrinology 2018; 159 (07) 2790-2802
- 12 Da J, Chen L, Hedenstierna G. Nitric oxide up-regulates the glucocorticoid receptor and blunts the inflammatory reaction in porcine endotoxin sepsis. Crit Care Med 2007; 35 (01) 26-32
- 13 Zhou T, Fan XM, Wang YQ, Qi YJ, Chen H, Qian SY. [Effects of different doses of hydrocortisone on acute lung injury in rats with early septic shock induced by Escherichia coli]. Zhonghua Er Ke Za Zhi 2004; 42 (09) 644-648
- 14 Zhang YC, Zuo WQ, Rong QF, Teng GL, Zhang YM. Glucocorticoid receptor expression on acute lung injury induced by endotoxin in rats. World J Emerg Med 2010; 1 (01) 65-69
- 15 Cohen J, Pretorius CJ, Ungerer JP. et al. Glucocorticoid sensitivity is highly variable in critically ill patients with septic shock and is associated with disease severity. Crit Care Med 2016; 44 (06) 1034-1041
- 16 Guerrero J, Gatica HA, Rodríguez M, Estay R, Goecke IA. Septic serum induces glucocorticoid resistance and modifies the expression of glucocorticoid isoforms receptors: a prospective cohort study and in vitro experimental assay. Crit Care 2013; 17 (03) R107
- 17 Kamiyama K, Matsuda N, Yamamoto S. et al. Modulation of glucocorticoid receptor expression, inflammation, and cell apoptosis in septic guinea pig lungs using methylprednisolone. Am J Physiol Lung Cell Mol Physiol 2008; 295 (06) L998-L1006
- 18 Wang XQ, Zhou X, Zhou Y, Rong L, Gao L, Xu W. Low-dose dexamethasone alleviates lipopolysaccharide-induced acute lung injury in rats and upregulates pulmonary glucocorticoid receptors. Respirology 2008; 13 (06) 772-780
- 19 Webster JC, Oakley RH, Jewell CM, Cidlowski JA. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci U S A 2001; 98 (12) 6865-6870
- 20 Lotsios NS, Vrettou CS, Poupouzas G. et al. Glucocorticoid receptor response and glucocorticoid-induced leucine zipper expression in neutrophils of critically ill patients with traumatic and non-traumatic brain injury. Front Endocrinol (Lausanne) 2024; 15: 1414785
- 21 Gruver-Yates AL, Cidlowski JA. Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells 2013; 2 (02) 202-223
- 22 Meduri GU, Psarra A-M, Amrein K. General Adaptation in Critical Illness 2: The Glucocorticoid Signaling System as a Master Rheostat of Homeostatic Corrections in Concerted Action with Mitochondrial and Essential Micronutrient Support. In: Fink G. ed. Handbook of Stress: Stress, Immunology and Inflammation. San Diego: Elsevier; 2024: 263-287 :chap 23. vol. 5.
- 23 Quatrini L, Ugolini S. New insights into the cell-and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 2021; 18 (02) 269-278
- 24 Meduri GU, Chrousos GP. General adaptation in critical illness: glucocorticoid receptor-alpha master regulator of homeostatic corrections. Front Endocrinol (Lausanne) 2020; 11 (161) 161
- 25 Vichyanond P, Irvin CG, Larsen GL, Szefler SJ, Hill MR. Penetration of corticosteroids into the lung: evidence for a difference between methylprednisolone and prednisolone. J Allergy Clin Immunol 1989; 84 (6 Pt 1): 867-873
- 26 Greos LS, Vichyanond P, Bloedow DC. et al. Methylprednisolone achieves greater concentrations in the lung than prednisolone. A pharmacokinetic analysis. Am Rev Respir Dis 1991; 144 (3 Pt 1): 586-592
- 27 Jin L, Li Z, Qian J, Liao W, Xu F. Comparative efficacy and prognostic impact of continuous versus intermittent hydrocortisone administration in septic shock patients. Sci Rep 2025; 15 (01) 14339
- 28 Meduri GU, Annane D, Confalonieri M. et al. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS. Intensive Care Med 2020; 46 (12) 2284-2296
- 29 Meduri GU, Confalonieri M, Chaudhuri D, Rochwerg B, Meibohm B. Prolonged glucocorticoid treatment in ARDS: pathobiological rationale and pharmacological principles. In: Fink G. ed. Handbook of Stress: Stress, Immunology and Inflammation. Academic Press; 2024: 289-323 :chap 24. vol. Encyclopedia of Stress
- 30 Buttgereit F, da Silva JA, Boers M. et al. Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: current questions and tentative answers in rheumatology. Ann Rheum Dis 2002; 61 (08) 718-722
- 31 Meduri GU, Kanangat S, Bronze M. et al. Effects of methylprednisolone on intracellular bacterial growth. Clin Diagn Lab Immunol 2001; 8 (06) 1156-1163
- 32 Yates CR, Vysokanov A, Mukherjee A. et al. Time-variant increase in methylprednisolone clearance in patients with acute respiratory distress syndrome: a population pharmacokinetic study. J Clin Pharmacol 2001; 41 (04) 415-424
- 33 Morgan ET. Regulation of cytochromes P450 during inflammation and infection. Drug Metab Rev 1997; 29 (04) 1129-1188
- 34 Suzuki S, Tsubochi H, Ishibashi H, Suzuki T, Kondo T, Sasano H. Increased expression of 11 β-hydroxysteroid dehydrogenase type 2 in the lungs of patients with acute respiratory distress syndrome. Pathol Int 2003; 53 (11) 751-756
- 35 Diederich S, Eigendorff E, Burkhardt P. et al. 11beta-hydroxysteroid dehydrogenase types 1 and 2: an important pharmacokinetic determinant for the activity of synthetic mineralo- and glucocorticoids. J Clin Endocrinol Metab 2002; 87 (12) 5695-5701
- 36 Stringer J. Basic Concepts in Pharmacology: What You Need to Know for Each Drug Class. McGraw-Hill Professional; 2017
- 37 Meduri GU, Tolley EA, Chrousos GP, Stentz F. Prolonged methylprednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory distress syndrome: evidence for inadequate endogenous glucocorticoid secretion and inflammation-induced immune cell resistance to glucocorticoids. Am J Respir Crit Care Med 2002; 165 (07) 983-991
- 38 Derendorf H, Möllmann H, Hochhaus G, Meibohm B, Barth J. Clinical PK/PD modelling as a tool in drug development of corticosteroids. Int J Clin Pharmacol Ther 1997; 35 (10) 481-488
- 39 Derendorf H, Hochhaus G, Möllmann H. et al. Receptor-based pharmacokinetic-pharmacodynamic analysis of corticosteroids. J Clin Pharmacol 1993; 33 (02) 115-123
- 40 Lapp HE, Bartlett AA, Hunter RG. Stress and glucocorticoid receptor regulation of mitochondrial gene expression. J Mol Endocrinol 2019; 62 (02) R121-R128
- 41 Jiang CL, Liu L, Tasker JG. Why do we need nongenomic glucocorticoid mechanisms?. Front Neuroendocrinol 2014; 35 (01) 72-75
- 42 Charmandari E, Nicolaides NC, Chrousos GP. Adrenal insufficiency. Lancet 2014; 383 (9935): 2152-2167
- 43 Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 2005; 44 (01) 61-98
- 44 Mollmann H, Balbach S, Hochhaus G, Barth J, Derendorf H. Pharmacokinetic-pharmacodynamic correlations of corticosteroids. Handbook of pharmacokinetic/pharmacodynamic correlation. 1995:323–362.
- 45 Croxtall JD, van Hal PTW, Choudhury Q, Gilroy DW, Flower RJ. Different glucocorticoids vary in their genomic and non-genomic mechanism of action in A549 cells. Br J Pharmacol 2002; 135 (02) 511-519
- 46 Annane D, Pastores SM, Rochwerg B. et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med 2017; 45 (12) 2078-2088
- 47 Meduri GU, Bridges L, Siemieniuk RAC, Kocak M. An exploratory reanalysis of the randomized trial on efficacy of corticosteroids as rescue therapy for the late phase of acute respiratory distress syndrome. Crit Care Med 2018; 46 (06) 884-891
- 48 Müller B, Peri G, Doni A. et al. High circulating levels of the IL-1 type II decoy receptor in critically ill patients with sepsis: association of high decoy receptor levels with glucocorticoid administration. J Leukoc Biol 2002; 72 (04) 643-649
- 49 Nawab QU, Golden E, Confalonieri M, Umberger R, Meduri GU. Corticosteroid treatment in severe community-acquired pneumonia: duration of treatment affects control of systemic inflammation and clinical improvement. Intensive Care Med 2011; 37 (09) 1553-1554
- 50 Hearing SD, Norman M, Smyth C, Foy C, Dayan CM. Wide variation in lymphocyte steroid sensitivity among healthy human volunteers. J Clin Endocrinol Metab 1999; 84 (11) 4149-4154
- 51 Lockett J, Inder WJ, Clifton VL. The glucocorticoid receptor: isoforms, functions, and contribution to glucocorticoid sensitivity. Endocr Rev 2024; 45 (04) 593-624
- 52 van Rossum EF, Koper JW, Huizenga NA. et al. A polymorphism in the glucocorticoid receptor gene, which decreases sensitivity to glucocorticoids in vivo, is associated with low insulin and cholesterol levels. Diabetes 2002; 51 (10) 3128-3134
- 53 Chriguer RS, Elias LLK, da Silva Jr IM, Vieira JGH, Moreira AC, de Castro M. Glucocorticoid sensitivity in young healthy individuals: in vitro and in vivo studies. J Clin Endocrinol Metab 2005; 90 (11) 5978-5984
- 54 Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 2013; 34 (09) 518-530
- 55 Colli LM, do Amaral FC, Torres N, de Castro M. Interindividual glucocorticoid sensitivity in young healthy subjects: the role of glucocorticoid receptor α and β isoforms ratio. Horm Metab Res 2007; 39 (06) 425-429
- 56 Lengton R, Iyer AM, van der Valk ES. et al. Variation in glucocorticoid sensitivity and the relation with obesity. Obes Rev 2022; 23 (03) e13401
- 57 Song Q-Q, Xie W-Y, Tang Y-J, Zhang J, Liu J. Genetic variation in the glucocorticoid pathway involved in interindividual differences in the glucocorticoid treatment. Pharmacogenomics 2017; 18 (03) 293-316
- 58 Kumsta R, Entringer S, Koper JW, van Rossum EF, Hellhammer DH, Wüst S. Sex specific associations between common glucocorticoid receptor gene variants and hypothalamus-pituitary-adrenal axis responses to psychosocial stress. Biol Psychiatry 2007; 62 (08) 863-869
- 59 Quax RA, Manenschijn L, Koper JW. et al. Glucocorticoid sensitivity in health and disease. Nat Rev Endocrinol 2013; 9 (11) 670-686
- 60 Meduri GU, Golden E, Freire AX. et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest 2007; 131 (04) 954-963
- 61 Martins CS, de Castro M. Generalized and tissue specific glucocorticoid resistance. Mol Cell Endocrinol 2021; 530: 111277
- 62 Scherholz ML, Rao RT, Androulakis IP. Modeling inter-sex and inter-individual variability in response to chronopharmacological administration of synthetic glucocorticoids. Chronobiol Int 2020; 37 (02) 281-296
- 63 Meduri GU, Headley AS, Golden E. et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA 1998; 280 (02) 159-165
- 64 Steinberg KP, Hudson LD, Goodman RB. et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354 (16) 1671-1684
- 65 Menendez R, Torres A. Treatment failure in community-acquired pneumonia. Chest 2007; 132 (04) 1348-1355
- 66 Rivers CA, Rogers MF, Stubbs FE, Conway-Campbell BL, Lightman SL, Pooley JR. Glucocorticoid receptor-tethered mineralocorticoid receptors increase glucocorticoid-induced transcriptional responses. Endocrinology 2019; 160 (05) 1044-1056
- 67 Nethathe GD, Cohen J, Lipman J, Anderson R, Feldman C. Mineralocorticoid dysfunction during critical illness: a review of the evidence. Anesthesiology 2020; 133 (02) 439-457
- 68 Psarra AM, Sekeris CE. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim Biophys Acta 2011; 1813 (10) 1814-1821
- 69 Mootha VK, Bunkenborg J, Olsen JV. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003; 115 (05) 629-640
- 70 Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S. Role of mitochondria in toxic oxidative stress. Mol Interv 2005; 5 (02) 94-111
- 71 Zhang Q, Raoof M, Chen Y. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464 (7285): 104-107
- 72 Nakahira K, Kyung S-Y, Rogers AJ. et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med 2013; 10 (12) e1001577 , discussion e1001577
- 73 Meduri GU, Muthiah MP, Carratu P, Eltorky M, Chrousos GP. Nuclear factor-kappaB- and glucocorticoid receptor alpha- mediated mechanisms in the regulation of systemic and pulmonary inflammation during sepsis and acute respiratory distress syndrome. Evidence for inflammation-induced target tissue resistance to glucocorticoids. Neuroimmunomodulation 2005; 12 (06) 321-338
- 74 Hoffmann RF, Jonker MR, Brandenburg SM. et al. Mitochondrial dysfunction increases pro-inflammatory cytokine production and impairs repair and corticosteroid responsiveness in lung epithelium. Sci Rep 2019; 9 (01) 15047
- 75 Meduri GU, Psarra A-MG. The glucocorticoid system: a multifaceted regulator of mitochondrial function, endothelial homeostasis, and intestinal barrier integrity. Semin Respir Crit Care Med 2025 (e-pub ahead of print)
- 76 Vandewalle J, Timmermans S, Paakinaho V. et al. Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metab 2021; 33 (09) 1763-1776.e5
- 77 Dendoncker K, Libert C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev 2017; 35: 85-96
- 78 Aziz M, Wang P. Glucocorticoid resistance and hyperlactatemia: a tag team to worsen sepsis. Cell Metab 2021; 33 (09) 1717-1718
- 79 Reichardt SD, Amouret A, Muzzi C. et al. The role of glucocorticoids in inflammatory diseases. Cells 2021; 10 (11) 2921
- 80 Psarra AM, Hermann S, Panayotou G, Spyrou G. Interaction of mitochondrial thioredoxin with glucocorticoid receptor and NF-kappaB modulates glucocorticoid receptor and NF-kappaB signalling in HEK-293 cells. Biochem J 2009; 422 (03) 521-531
- 81 Polito A, Sonneville R, Guidoux C. et al. Changes in CRH and ACTH synthesis during experimental and human septic shock. PLoS One 2011; 6 (11) e25905
- 82 Jennewein C, Tran N, Kanczkowski W. et al. Mortality of septic mice strongly correlates with adrenal gland inflammation. Crit Care Med 2016; 44 (04) e190-e199
- 83 Kraft BD, Chen L, Suliman HB, Piantadosi CA, Welty-Wolf KE. Peripheral blood mononuclear cells demonstrate mitochondrial damage clearance during sepsis. Crit Care Med 2019; 47 (05) 651-658
- 84 Wang CN, Duan GL, Liu YJ. et al. Overproduction of nitric oxide by endothelial cells and macrophages contributes to mitochondrial oxidative stress in adrenocortical cells and adrenal insufficiency during endotoxemia. Free Radic Biol Med 2015; 83: 31-40
- 85 Stio M, Martinesi M, Bruni S. et al. The Vitamin D analogue TX 527 blocks NF-kappaB activation in peripheral blood mononuclear cells of patients with Crohn's disease. J Steroid Biochem Mol Biol 2007; 103 (01) 51-60
- 86 Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 2013; 132 (05) 1033-1044
- 87 Carr AC, Maggini S. Vitamin C and immune function. Nutrients 2017; 9 (11) 1211
- 88 Witteveen E, Wieske L, van der Poll T. et al; Molecular Diagnosis and Risk Stratification of Sepsis (MARS) Consortium. Increased Early Systemic Inflammation in ICU-acquired weakness; a prospective observational cohort study. Crit Care Med 2017; 45 (06) 972-979
- 89 Shelygina NM, Spivak RIa, Zaretskiĭ MM, Panichkina VI, Gusiatinskaia VM. [Influence of vitamins C, Bl, and B6 on the diurnal periodicity of the glucocorticoid function of the adrenal cortex in patients with atherosclerotic cardiosclerosis]. Vopr Pitan 1975; (02) 25-29
- 90 Eisenstein AB, Hartroft PM. Alterations in the rat adrenal cortex induced by sodium deficiency: steroid hormone secretion. Endocrinology 1957; 60 (05) 634-640
- 91 Hellmann H, Mooney S. Vitamin B6: a molecule for human health?. Molecules 2010; 15 (01) 442-459
- 92 Scheschowitsch K, Leite JA, Assreuy J. New insights in glucocorticoid receptor signaling—more than just a ligand-binding receptor. Front Endocrinol (Lausanne) 2017; 8: 16
- 93 Padayatty SJ, Katz A, Wang Y. et al. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 2003; 22 (01) 18-35
- 94 Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 2000; 71 (1-2): 121-138
- 95 Ly A, Ishiguro L, Kim D. et al. Maternal folic acid supplementation modulates DNA methylation and gene expression in the rat offspring in a gestation period-dependent and organ-specific manner. J Nutr Biochem 2016; 33 (33) 103-110
- 96 Hayashi R, Wada H, Ito K, Adcock IM. Effects of glucocorticoids on gene transcription. Eur J Pharmacol 2004; 500 (1-3): 51-62
- 97 Kassi E, Nasiri-Ansari N, Papavassiliou AG. Vitamin D affects glucocorticoid action in target cells. Oncotarget 2017; 8 (05) 7220-7221
- 98 Mahboub B, Al Heialy S, Hachim MY. et al. Vitamin D regulates the expression of glucocorticoid receptors in blood of severe asthmatic patients. J Immunol Res 2021; 2021 (01) 9947370
- 99 Quigley M, Rieger S, Capobianco E. et al. Vitamin D modulation of mitochondrial oxidative metabolism and mTOR enforces stress adaptations and anticancer responses. JBMR Plus 2021; 6 (01) e10572
- 100 Lundqvist J. Vitamin D as a regulator of steroidogenic enzymes. F1000 Res 2014; 3: 155
- 101 Zhang Y, Leung DYM, Goleva E. Vitamin D enhances glucocorticoid action in human monocytes: involvement of granulocyte-macrophage colony-stimulating factor and mediator complex subunit 14. J Biol Chem 2013; 288 (20) 14544-14553
- 102 Freedman LP, Luisi BF, Korszun ZR, Basavappa R, Sigler PB, Yamamoto KR. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature 1988; 334 (6182): 543-546
- 103 Falus A, Béres Jr J. The number of glucocorticoid receptors in peripheral human lymphocytes is elevated by a zinc containing trace element preparation. Acta Microbiol Immunol Hung 1995; 42 (03) 271-275
- 104 Mohammadi H, Talebi S, Ghavami A. et al. Effects of zinc supplementation on inflammatory biomarkers and oxidative stress in adults: a systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol 2021; 68: 126857
- 105 Burton GW, Traber MG. Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr 1990; 10 (01) 357-382
- 106 Manzanares W, Dhaliwal R, Jiang X, Murch L, Heyland DK. Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit Care 2012; 16 (02) R66
- 107 Menger J, Lee Z-Y, Notz Q. et al. Administration of vitamin D and its metabolites in critically ill adult patients: an updated systematic review with meta-analysis of randomized controlled trials. Crit Care 2022; 26 (01) 268
- 108 Jaff S, Zeraattalab-Motlagh S, Amiri Khosroshahi R, Gubari M, Mohammadi H, Djafarian K. The effect of selenium therapy in critically ill patients: an umbrella review of systematic reviews and meta-analysis of randomized controlled trials. Eur J Med Res 2023; 28 (01) 104
- 109 Vesterlund GK, Jensen TS, Ellekjaer KL, Møller MH, Thomsen T, Perner A. Effects of magnesium, phosphate, or zinc supplementation in intensive care unit patients-a systematic review and meta-analysis. Acta Anaesthesiol Scand 2023; 67 (03) 264-276
- 110 Patak P, Willenberg HS, Bornstein SR. Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr Res 2004; 30 (04) 871-875
- 111 Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun 2004; 315 (01) 240-245
- 112 G. Umberto Meduri A-MGP, Karin Amreinc, George P. Chrousos. General Adaptation in Critical Illness 2: The Glucocorticoid Signaling System as a Master Rheostat of Homeostatic Corrections in Concerted Action with Mitochondrial and Essential Micronutrient Support. In: Fink G. ed. Handbook of Stress: Stress, Immunology and Inflammation. Elsevier, Academic Press; 2024: 263-287
- 113 Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest 2017; 151 (06) 1229-1238
- 114 Oudemans-van Straaten HM, Elbers PWG, Spoelstra-de Man AME. How to give vitamin C a cautious but fair chance in severe sepsis. Chest 2017; 151 (06) 1199-1200
- 115 Hoepner R, Bagnoud M, Pistor M. et al. Vitamin D increases glucocorticoid efficacy via inhibition of mTORC1 in experimental models of multiple sclerosis. Acta Neuropathol 2019; 138 (03) 443-456
- 116 Okamoto K, Tanaka H, Makino Y, Makino I. Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 (L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism. Biochem Pharmacol 1998; 56 (01) 79-86
- 117 Almansa R, Heredia-Rodríguez M, Gomez-Sanchez E. et al. Transcriptomic correlates of organ failure extent in sepsis. J Infect 2015; 70 (05) 445-456
- 118 Moskowitz A, Andersen LW, Cocchi MN, Karlsson M, Patel PV, Donnino MW. Thiamine as a renal protective agent in septic shock. A secondary analysis of a randomized, double-blind, placebo-controlled trial. Ann Am Thorac Soc 2017; 14 (05) 737-741
- 119 Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update 2014; 20 (02) 293-307
- 120 Chitimus DM, Popescu MR, Voiculescu SE. et al. Melatonin's impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules 2020; 10 (09) 1211
- 121 Luchetti F, Canonico B, Betti M. et al. Melatonin signaling and cell protection function. FASEB J 2010; 24 (10) 3603-3624
- 122 Chrustek A, Olszewska-Słonina D. Melatonin as a powerful antioxidant. Acta Pharm 2020; 71 (03) 335-354
- 123 Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?. J Pineal Res 2007; 42 (01) 28-42
- 124 Mootha VK, Lindgren CM, Eriksson K-F. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34 (03) 267-273
- 125 Lei X, Xu Z, Huang L. et al. The potential influence of melatonin on mitochondrial quality control: a review. Front Pharmacol 2024; 14: 1332567
- 126 Ferreira ZS, Fernandes PA, Duma D, Assreuy J, Avellar MC, Markus RP. Corticosterone modulates noradrenaline-induced melatonin synthesis through inhibition of nuclear factor kappa B. J Pineal Res 2005; 38 (03) 182-188
- 127 Bi J, Sun P, Feng E. et al. Melatonin synergizes with methylprednisolone to ameliorate acute spinal cord injury. Front Pharmacol 2022; 12: 723913
- 128 Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65 (04) e12525
- 129 Li J-H, Yu J-P, Yu H-G. et al. Melatonin reduces inflammatory injury through inhibiting NF-kappaB activation in rats with colitis. Mediators Inflamm 2005; 2005 (04) 185-193
- 130 Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2 (01) 17023
- 131 Zhang Q, Gao F, Zhang S, Sun W, Li Z. Prophylactic use of exogenous melatonin and melatonin receptor agonists to improve sleep and delirium in the intensive care units: a systematic review and meta-analysis of randomized controlled trials. Sleep Breath 2019; 23 (04) 1059-1070
- 132 Komatsubara M, Hara T, Hosoya T. et al. Melatonin regulates catecholamine biosynthesis by modulating bone morphogenetic protein and glucocorticoid actions. J Steroid Biochem Mol Biol 2016
- 133 Pandi-Perumal SR, Trakht I, Srinivasan V. et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 2008; 85 (03) 335-353
- 134 Maas R, Schwedhelm E, Kahl L. et al. Simultaneous assessment of endothelial function, nitric oxide synthase activity, nitric oxide-mediated signaling, and oxidative stress in individuals with and without hypercholesterolemia. Clin Chem 2008; 54 (02) 292-300
- 135 Barriga C, Martín MI, Tabla R, Ortega E, Rodríguez AB. Circadian rhythm of melatonin, corticosterone and phagocytosis: effect of stress. J Pineal Res 2001; 30 (03) 180-187
- 136 Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol 2018; 175 (16) 3239-3250
- 137 Muxel SM, Pires-Lapa MA, Monteiro AW. et al. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One 2012; 7 (12) e52010
- 138 De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003; 24 (04) 488-522
- 139 Almawi WY, Melemedjian OK. Negative regulation of nuclear factor-kappaB activation and function by glucocorticoids. J Mol Endocrinol 2002; 28 (02) 69-78
- 140 Jonat C, Rahmsdorf HJ, Park KK. et al. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 1990; 62 (06) 1189-1204
- 141 Fruchter O, Kino T, Zoumakis E. et al. The human glucocorticoid receptor (GR) isoform beta differentially suppresses GRalpha-induced transactivation stimulated by synthetic glucocorticoids. J Clin Endocrinol Metab 2005; 90 (06) 3505-3509
- 142 Farrell RJ, Kelleher D. Glucocorticoid resistance in inflammatory bowel disease. J Endocrinol 2003; 178 (03) 339-346
- 143 Smoak K, Cidlowski JA. Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol Cell Biol 2006; 26 (23) 9126-9135
- 144 Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor?. Mol Pharmacol 2007; 72 (04) 799-809
- 145 Ito K, Lim S, Caramori G. et al. A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci U S A 2002; 99 (13) 8921-8926
- 146 Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol Ther 2015; 152: 28-41
- 147 Hopkins RO, Weaver LK, Chan KJ, Orme Jr JF. Quality of life, emotional, and cognitive function following acute respiratory distress syndrome. J Int Neuropsychol Soc 2004; 10 (07) 1005-1017
- 148 Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the intestinal epithelial tight junction barrier. Front Immunol 2021; 12: 767456
- 149 Zanza C, Romenskaya T, Thangathurai D. et al. Microbiome in critical care: an unconventional and unknown ally. Curr Med Chem 2022; 29 (18) 3179-3188
- 150 Shimizu K, Ojima M, Ogura H. Gut microbiota and probiotics/synbiotics for modulation of immunity in critically ill patients. Nutrients 2021; 13 (07) 2439
- 151 Jeon H, Lee D, Kim J-Y, Shim J-J, Lee J-H. Limosilactobacillus reuteri HY7503 and its cellular proteins alleviate endothelial dysfunction by increasing nitric oxide production and regulating cell adhesion molecule levels. Int J Mol Sci 2024; 25 (20) 11326
- 152 Su H, Kang Q, Wang H. et al. Effects of glucocorticoids combined with probiotics in treating Crohn's disease on inflammatory factors and intestinal microflora. Exp Ther Med 2018; 16 (04) 2999-3003
- 153 Inceu A-I, Neag MA, Cătinean A. et al. The effects of probiotic bacillus spores on dexamethasone-treated rats. Int J Mol Sci 2023; 24 (20) 15111
- 154 Chargo NJ, Schepper JD, Rios-Arce N. et al. Lactobacillus reuteri 6475 prevents bone loss in a clinically relevant oral model of glucocorticoid-induced osteoporosis in male CD-1 mice. JBMR Plus 2023; 7 (12) e10805
- 155 Schepper J, Rios-Acre N, Collins F, Parameswaran N, McCabe L. Alterations to the gut microbiome prevent glucocorticoid induced osteoporosis. FASEB J 2019 33.
- 156 Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009; 139 (09) 1619-1625
- 157 Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 2017; 12 (06) e0179586
- 158 Kelly CJ, Zheng L, Campbell EL. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015; 17 (05) 662-671
- 159 Xing X, Hu S, Chen M. et al. Severe acute respiratory infection risk following glucocorticosteroid treatment in uncomplicated influenza-like illness resulting from pH1N1 influenza infection: a case control study. BMC Infect Dis 2019; 19 (01) 1080
- 160 Hadizadeh M, Hamidi GA, Salami M. Probiotic supplementation improves the cognitive function and the anxiety-like behaviors in the stressed rats. Iran J Basic Med Sci 2019; 22 (05) 506-514
- 161 Ait-Belgnaoui A, Payard I, Rolland C. et al. Bifidobacterium longum and Lactobacillus helveticus synergistically suppress stress-related visceral hypersensitivity through hypothalamic-pituitary-adrenal axis modulation. J Neurogastroenterol Motil 2018; 24 (01) 138-146
- 162 Annane D, Pastores SM, Rochwerg B. et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med 2017; 43 (12) 1751-1763
- 163 Meduri GU, Yates CR. Systemic inflammation-associated glucocorticoid resistance and outcome of ARDS. Ann N Y Acad Sci 2004; 1024: 24-53
- 164 Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect 2018; 7 (12) R328-R349
- 165 Rodriguez JM, Monsalves-Alvarez M, Henriquez S, Llanos MN, Troncoso R. Glucocorticoid resistance in chronic diseases. Steroids 2016; 115: 182-192
- 166 Koper JW, van Rossum EF, van den Akker EL. Glucocorticoid receptor polymorphisms and haplotypes and their expression in health and disease. Steroids 2014; 92: 62-73
- 167 Bhatia R, Muraskas J, Janusek LW, Mathews H. Measurement of the glucocorticoid receptor: relevance to the diagnosis of critical illness-related corticosteroid insufficiency in children. J Crit Care 2014; 29 (04) 691.e1-691.e5
- 168 Meduri GU, Lannini S, Smith J. Limitations in the design of critical care studies and suggestions for future research directions. Semin Respir Crit Care Med 2025 (e-pub ahead of print)
- 169 Cui Z, Merritt Z, Assa A. et al. Early and significant reduction in C-reactive protein levels after corticosteroid therapy is associated with reduced mortality in patients with COVID-19. J Hosp Med 2021; 16 (03) 142-148
- 170 Ayuningtyas LV, Hermosaningtyas AA, Airlangga P. et al. Comparison of changes in inflammation markers NLR, CRP, and LCR after corticosteroid therapy in severe and critical COVID-19 patients. Trends Sci 2023;
- 171 Singh N, Kumar R, Kumar S, Prasad N, Muni S, Kumari N. The trend of C-reactive protein after corticosteroid therapy in COVID-19 patients admitted to IGIMS, Patna. Cureus 2024; 16 (01) e51499
- 172 Wu WF, Fang Q, He GJ. Efficacy of corticosteroid treatment for severe community-acquired pneumonia: a meta-analysis. Am J Emerg Med 2018; 36 (02) 179-184
- 173 Urbina T, Gabarre P, Bonny V. et al. Corticosteroids induce an early but limited decrease in IL-6 dependent pro-inflammatory responses in critically ill COVID-19 patients. Minerva Anestesiol 2024; 90 (03) 172-180
- 174 Li B, Kalinowski P, Kim B, Pauls AD, Poburko D. Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2022; 232: 107995
- 175 Cloonan SM, Choi AM. Mitochondria in lung disease. J Clin Invest 2016; 126 (03) 809-820
- 176 Bornstein SR, Rutkowski H, Vrezas I. Cytokines and steroidogenesis. Mol Cell Endocrinol 2004; 215 (1-2): 135-141
- 177 Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A 1997; 94 (25) 13600-13605
- 178 Tanaka S, Couret D, Tran-Dinh A. et al. High-density lipoproteins during sepsis: from bench to bedside. Crit Care 2020; 24 (01) 134
- 179 van Leeuwen HJ, Heezius EC, Dallinga GM, van Strijp JA, Verhoef J, van Kessel KP. Lipoprotein metabolism in patients with severe sepsis. Crit Care Med 2003; 31 (05) 1359-1366
- 180 Nicolaides NC, Charmandari E. Novel insights into the molecular mechanisms underlying generalized glucocorticoid resistance and hypersensitivity syndromes. Hormones (Athens) 2017; 16 (02) 124-138
- 181 Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol 2017; 17 (04) 233-247
- 182 Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the ‘gluc’ back in glucocorticoids. Nat Rev Endocrinol 2014; 10 (05) 303-310
- 183 Förster C, Waschke J, Burek M, Leers J, Drenckhahn D. Glucocorticoid effects on mouse microvascular endothelial barrier permeability are brain specific. J Physiol 2006; 573 (Pt 2): 413-425
- 184 Zielińska KA, Van Moortel L, Opdenakker G, De Bosscher K, Van den Steen PE. Endothelial response to glucocorticoids in inflammatory diseases. Front Immunol 2016; 7: 592
- 185 Figueiredo HF, Ulrich-Lai YM, Choi DC, Herman JP. Estrogen potentiates adrenocortical responses to stress in female rats. Am J Physiol Endocrinol Metab 2007; 292 (04) E1173-E1182
- 186 Spaanderman DCE, Nixon M, Buurstede JC. et al. Androgens modulate glucocorticoid receptor activity in adipose tissue and liver. J Endocrinol 2019; 240 (01) 51-63
- 187 Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol 2005; 67: 259-284