RSS-Feed abonnieren
DOI: 10.1055/a-2698-0433
Meta-Data Analysis to Explore the Interaction of the Hub-Genes interlinking SARS-CoV-2 and Cardiovascular Diseases
Metadatenanalyse zur Untersuchung der Interaktion von Hub-Genen im Zusammenhang zwischen SARS-CoV-2 und kardiovaskulären ErkrankungenAuthors
Gefördert durch: Tun Ahmad Sarji Endowment Fund (TASREF) UCMI/ TNCPP/RMC/Geran/2024 (63)

Abstract
Introduction
The impact of the pandemic of SARS-CoV-2 infections in the population has caused many diseases onset, post the recovery. The most common is Cardiac injury, which causes further complications that lead to cardiovascular diseases (CVD). This study aimed to analyse the hub genes with a high correlation between SARS-CoV-2 and cardiovascular diseases.
Materials and Methods
The datasets were obtained from the already available GSE196822, GSE196656, and GSE169241 data sets. DESec 2 in R was used for differentially expressed genes, and enriched pathway analysis was performed. Further, Cytoscape used the protein-protein interactions by STRING and hub genes for the common DEGs.
Results
The transcriptome analysis of GSE196822 revealed that 7,376 upregulated and 3,673 downregulated genes were the differentially expressed genes (DEGs) among the three selected datasets. Combining the overlap of these data sets for the common genes involved in COVID-19 and CVD, 169 upregulated and 123 downregulated DEGs were observed. These DEGs are further examined with GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes). The KEGG pathway revealed 21 upregulated and 11 downregulated pathways, where the highest count was recorded in transcriptional misregulations in cancer and metabolic pathways, respectively. The top 10 hub genes analysis and PPI network analysis revealed their interlinings for upregulation and downregulations, respectively. The top three upregulated genes (TIMP1, MPO, NFKBIA) and downregulated genes (ACSS1, OXCT1, ADHFE1) identified by differential expression analysis were validated by qRT-PCR, confirming their significant and consistent expression changes under the experimental conditions.
Conclusion
The 9 out of 10 hub genes with elevated co-expressibility of linked genes between COVID-19 and CVD showed complications consistent with previous reports. Our findings further suggest that these hub genes may serve dual purposes: as indicators of early viral infection, including COVID-19 and related viral illnesses, and as potential predictors of cardiovascular disease (CVD) onset following COVID-19 infection. This work strongly urges health policymakers to implement screening for COVID-19 complications, especially CVDs, in the general public.
Zusammenfassung
Einleitung
Die SARS-CoV-2-Pandemie hat weitreichende gesundheitliche Folgen für die Bevölkerung nach überstandener Infektion gezeigt. Besonders häufig treten kardiale Schädigungen auf, die weitere Komplikationen nach sich ziehen und zur Entstehung kardiovaskulärer Erkrankungen (CVD) beitragen können. Ziel dieser Studie war es, Schlüsselgene, sog. „Hub-Gene“ zu identifizieren, die eine hohe Korrelation zwischen SARS-CoV-2-Infektionen und kardiovaskulären Erkrankungen aufweisen.
Material und Methoden
Die Analyse basierte auf öffentlich verfügbaren Datensätzen: GSE196822, GSE196656 und GSE169241. Zur Identifikation differentiell exprimierter Gene (DEGs) wurde das R-Paket DESeq2 verwendet. Anschließend erfolgte eine Anreicherungspfadanalyse. Für die Analyse von Protein-Protein-Interaktionen (PPI) und die Identifikation zentraler Gene (Hub-Gene) wurde Cytoscape unter Einbindung der STRING-Datenbank genutzt.
Ergebnisse
Die Transkriptomanalyse des Datensatzes GSE196822 ergab 7.376 hochregulierte und 3.673 herunterregulierte Gene. Durch Überlappung der drei Datensätze konnten 169 hochregulierte und 123 herunterregulierte gemeinsame DEGs identifiziert werden, die sowohl mit COVID-19 als auch mit CVD in Verbindung stehen. Diese Gene wurden mittels Gene Ontology (GO) und Kyoto Encyclopedia of Genes and Genomes (KEGG) weiter untersucht. Die KEGG-Analyse zeigte 21 hochregulierte und 11 herunterregulierte Signalwege, wobei die meisten Gene mit Transkriptionsfehlregulationen bei Krebs sowie mit metabolischen Signalwegen assoziiert waren. Die Analyse der zehn wichtigsten Hub-Gene und des PPI-Netzwerks verdeutlichte deren funktionelle Vernetzung. Die drei am stärksten hochregulierten Gene (TIMP1, MPO, NFKBIA) sowie die drei am stärksten herunterregulierten Gene (ACSS1, OXCT1, ADHFE1) wurden mittels quantitativer Real-Time-PCR (qRT-PCR) validiert, was ihre signifikanten und konsistenten Expressionsveränderungen unter experimentellen Bedingungen bestätigte.
Fazit
Neun der zehn identifizierten Hub-Gene zeigten eine erhöhte Ko-Expression mit Genen, die sowohl mit COVID-19 als auch mit kardiovaskulären Erkrankungen in Zusammenhang stehen. Diese Ergebnisse stimmen mit früheren Studien überein. Die identifizierten Gene könnten sowohl als Marker für eine frühe virale Infektion – einschließlich COVID-19 und verwandter viraler Erkrankungen – als auch als potenzielle Prädiktoren für das Auftreten kardiovaskulärer Erkrankungen nach einer COVID-19-Infektion dienen. Die Studie unterstreicht die Notwendigkeit, gesundheitspolitische Maßnahmen zur Früherkennung von COVID-19-bedingten Komplikationen, insbesondere kardiovaskulärer Erkrankungen, in der Allgemeinbevölkerung zu etablieren.
Publikationsverlauf
Eingereicht: 15. Juni 2025
Angenommen nach Revision: 03. September 2025
Artikel online veröffentlicht:
23. September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Sharma A, Tiwari S, Deb MK. et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int J Antimicrob Agents 2020; 56: 106054
- 2 Al-Qahtani AA. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Emergence, history, basic and clinical aspects. Saudi J Biol Sci 2020; 27: 2531-2538
- 3 World Health Organization. Living guidance for clinical management of COVID-19. Genf: World Health Organization; 2021. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2
- 4 Rasputniak OV, Gavrilenko TI, Pidgaina OA. et al. Cardiovascular Complications of COVID-19: Review of Cardiac Injury Pathophysiology and Clinical Evidence. Ukrainian Journal of Cardiovascular Surgery 2024; 32: 92-104
- 5 Long B, Brady WJ, Koyfman A. et al. Cardiovascular complications in COVID-19. Am J Emerg Med 2020; 38: 1504-1507
- 6 Farshidfar F, Koleini N, Ardehali H. Cardiovascular complications of COVID-19. JCI Insight 2021; 6: e148980
- 7 Aggarwal G, Cheruiyot I, Aggarwal S. et al. Association of Cardiovascular Disease With Coronavirus Disease 2019 (COVID-19) Severity: A Meta-Analysis. Curr Probl Cardiol 2020; 45: 100617
- 8 Clerkin KJ, Fried JA, Raikhelkar J. et al. COVID-19 and Cardiovascular Disease. Circulation 2020; 141: 1648-1655
- 9 Akhmerov A, Marbán E. COVID-19 and the Heart. Circ Res 2020; 126: 1443-1455
- 10 Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 2021; 40: 905-919
- 11 Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis 2021; 53: 737-754
- 12 Camaj A, Giustino G, Miller M. et al. Abstract 15808: Relationship Between Myocardial Injury, Wall Motion Abnormalities and Mortality in Patients With Covid-19: The Circ-19 Registry. Circulation 2020; 142 (Suppl. 3)
- 13 Giustino G, Croft LB, Stefanini GG. et al. Characterization of Myocardial Injury in Patients With COVID-19. J Am Coll Cardiol 2020; 76: 2043-2055
- 14 Dai S, Cao T, Shen H. et al. Landscape of molecular crosstalk between SARS-CoV-2 infection and cardiovascular diseases: emphasis on mitochondrial dysfunction and immune-inflammation. J Transl Med 2023; 21: 915
- 15 Zhang R, Chen X, Zuo W. et al. Inflammatory activation and immune cell infiltration are main biological characteristics of SARS-CoV-2 infected myocardium. Bioengineered 2022; 13: 2486-2497
- 16 Stenmark KR, Frid MG, Gerasimovskaya E. et al. Mechanisms of SARS-CoV-2-induced lung vascular disease: potential role of complement. Pulm Circ 2021; 11: 1-14
- 17 A decade of drug-likeness. Nat Rev Drug Discov 2007; 6: 853
- 18 Rocca A, Biagi C, Scarpini S. et al. Passive Immunoprophylaxis against Respiratory Syncytial Virus in Children: Where Are We Now?. Int J Mol Sci 2021; 22: 3703
- 19 Keri VC, Hooda A, Kodan P. et al. Intricate interplay between Covid-19 and cardiovascular diseases. Rev Med Virol 2021; 31: e2188
- 20 You H, Zhao Q, Dong M. The Key Genes Underlying Pathophysiology Correlation Between the Acute Myocardial Infarction and COVID-19. Int J Gen Med 2022; 15: 2479-2490
- 21 Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135: 2033-2040
- 22 Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases?. Nat Rev Immunol 2020; 20: 271-272
- 23 Qian J, Le Duff Y, Wang Y. et al. Primate lentiviruses are differentially inhibited by interferon-induced transmembrane proteins. Virology 2015; 474: 10-18
- 24 Jha PK, Vijay A, Halu A. et al. Gene Expression Profiling Reveals the Shared and Distinct Transcriptional Signatures in Human Lung Epithelial Cells Infected With SARS-CoV-2, MERS-CoV, or SARS-CoV: Potential Implications in Cardiovascular Complications of COVID-19. Front Cardiovasc Med 2021; 7: 623012
- 25 Vollmer AH, Gebre MS, Barnard DL. Serum amyloid A (SAA) is an early biomarker of influenza virus disease in BALB/c, C57BL/2, Swiss-Webster, and DBA.2 mice. Antiviral Res 2016; 133: 196-207
- 26 Burotto M, Chiou VL, Lee J. et al. The MAPK pathway across different malignancies: A new perspective. Cancer 2014; 120: 3446-3456
- 27 Sumbria D, Berber E, Mathayan M. et al. Virus Infections and Host Metabolism – Can We Manage the Interactions?. Front Immunol 2021; 11: 594963
- 28 Datta PK, Deshmane S, Khalili K. et al. Glutamate metabolism in HIV-1 infected macrophages: Role of HIV-1 Vpr. Cell Cycle 2016; 15: 2288-2298
- 29 Brusa S, Terracciano D, Bruzzese D. et al. Circulating tissue inhibitor of metalloproteinases 1 (TIMP-1) at COVID-19 onset predicts severity status. Front Med (Lausanne) 2022; 9: 1034288
- 30 Lin W, Chen H, Chen X. et al. The Roles of Neutrophil-Derived Myeloperoxidase (MPO) in Diseases: The New Progress. Antioxidants 2024; 13: 132
- 31 Camblor DG, Miranda D, Albaiceta GM. et al. Genetic variants in the NF-κB signaling pathway (NFKB1, NFKBIA, NFKBIZ) and risk of critical outcome among COVID-19 patients. Hum Immunol 2022; 83: 613-617
- 32 Fragoso JM, Vargas-Alarcón G, Martínez-Flores ÁE. et al. ELANE rs17223045C/T and rs3761007G/A variants: Protective factors against COVID-19. Biomol Biomed 2024; 24: 665-672
- 33 Karampoor S, Hesamizadeh K, Maleki F. et al. A possible pathogenic correlation between neutrophil elastase (NE) enzyme and inflammation in the pathogenesis of coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2021; 100: 108137
- 34 Guéant J, Guéant-Rodriguez R, Fromonot J. et al. Elastase and exacerbation of neutrophil innate immunity are involved in multi-visceral manifestations of COVID-19. Allergy 2021; 76: 1846-1858
- 35 Derakhshani A, Hemmat N, Asadzadeh Z. et al. Arginase 1 (Arg1) as an Up-Regulated Gene in COVID-19 Patients: A Promising Marker in COVID-19 Immunopathy. J Clin Med 2021; 10: 1051
- 36 Munder M. Suppression of T-cell functions by human granulocyte arginase. Blood 2006; 108: 1627-1634
- 37 Grzywa TM, Sosnowska A, Matryba P. et al. Myeloid Cell-Derived Arginase in Cancer Immune Response. Front Immunol 2020; 11: 938
- 38 Burrack KS, Tan JJL, McCarthy MK. et al. Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells. PLoS Pathog 2015; 11: e1005191
- 39 Tatum D, Taghavi S, Houghton A. et al. Neutrophil-to-Lymphocyte Ratio and Outcomes in Louisiana COVID-19 Patients. Shock 2020; 54: 652-658
- 40 Kim YK, Jo D, Arjunan A. et al. Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer’s Disease Mice via Transcriptomic and Cellular Analysis. Int J Mol Sci 2024; 25: 2567
- 41 Brownell NK, Khera A, de Lemos JA. et al. Association Between Peptidoglycan Recognition Protein-1 and Incident Atherosclerotic Cardiovascular Disease Events. J Am Coll Cardiol 2016; 67: 2310-2312
- 42 Busch MH, Timmermans SAMEG, Aendekerk JP. et al. Annexin A1 Is Associated with Adverse Clinical Outcomes in Patients with COVID-19. J Clin Med 2022; 11: 7486
- 43 Zhao L, Zheng M, Guo Z. et al. Circulating Serpina3 levels predict the major adverse cardiac events in patients with myocardial infarction. Int J Cardiol 2020; 300: 34-38