Subscribe to RSS
DOI: 10.1055/a-2698-7273
Emerging Concepts in Pathogenesis, Multiomics Applications, and Clinical Research in Lymphangioleiomyomatosis
Authors
Funding This work was supported by the NIH (grant nos.: R01HL160972 and R01HL178848 to J.J.Y., R01HL153045 and R01 HL172914 to Y.X. and J.J.Y.; U01 HL175383 and U01HL148856 to Y.X.), the LAM Foundation (grant nos.: LAM0150C01-22-888654 to M.G.; LAM0155S01-22-968724, LAM0164E01-1177076-2, and LAMF165EI-1346848-25 to Y.X.).

Abstract
Lymphangioleiomyomatosis (LAM) is a rare, female-predominant, low-grade neoplasm characterized by infiltration of abnormal smooth muscle-like and epithelioid cells into the lung parenchyma, leading to cystic changes and progressive respiratory failure. In recent years, LAM has been an exemplar of meaningful progress in a rare lung disease, driven by close collaboration between patients, scientists, and clinicians, leading to the development of the U.S. Food and Drug Administration (FDA)-approved therapy, a diagnostic biomarker, a worldwide clinic network, and clinical practice guidelines. Integrating state-of-the-art bioinformatics and experimental approaches is helping accelerate the scientific progress in LAM and promises the development of novel biomarkers and therapies in the coming few years.
Keywords
lymphangioleiomyomatosis - diagnostic biomarker - progressive respiratory failure - bioinformatics applications in LAMPublication History
Received: 03 September 2025
Accepted: 10 September 2025
Article published online:
26 September 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Olatoke T, Wagner A, Astrinidis A. et al. Single-cell multiomic analysis identifies a HOX-PBX gene network regulating the survival of lymphangioleiomyomatosis cells. Sci Adv 2023; 9 (19) eadf8549
- 2 McCarthy C, Gupta N, Johnson SR, Yu JJ, McCormack FX. Lymphangioleiomyomatosis: pathogenesis, clinical features, diagnosis, and management. Lancet Respir Med 2021; 9 (11) 1313-1327
- 3 McCormack FX, Travis WD, Colby TV, Henske EP, Moss J. Lymphangioleiomyomatosis: calling it what it is: a low-grade, destructive, metastasizing neoplasm. Am J Respir Crit Care Med 2012; 186 (12) 1210-1212
- 4 Gupta N, Johnson SR. Lymphangioleiomyomatosis: No longer ultra-rare. Am J Respir Crit Care Med 2024; 209 (04) 358-359
- 5 Carsillo T, Astrinidis A, Henske EP. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A 2000; 97 (11) 6085-6090
- 6 Guo M, Yu JJ, Perl AK. et al. Single-cell transcriptomic analysis identifies a unique pulmonary lymphangioleiomyomatosis cell. Am J Respir Crit Care Med 2020; 202 (10) 1373-1387
- 7 Plank TL, Yeung RS, Henske EP. Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res 1998; 58 (21) 4766-4770
- 8 Dibble CC, Elis W, Menon S. et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47 (04) 535-546
- 9 Garami A, Zwartkruis FJ, Nobukuni T. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11 (06) 1457-1466
- 10 Stocker H, Radimerski T, Schindelholz B. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila . Nat Cell Biol 2003; 5 (06) 559-565
- 11 Valvezan AJ, Turner M, Belaid A. et al. mTORC1 couples nucleotide synthesis to nucleotide demand resulting in a targetable metabolic vulnerability. Cancer Cell 2017; 32 (05) 624-638.e5
- 12 Alayev A, Salamon RS, Sun Y. et al. Effects of combining rapamycin and resveratrol on apoptosis and growth of TSC2-deficient xenograft tumors. Am J Respir Cell Mol Biol 2015; 53 (05) 637-646
- 13 Alayev A, Sun Y, Snyder RB, Berger SM, Yu JJ, Holz MK. Resveratrol prevents rapamycin-induced upregulation of autophagy and selectively induces apoptosis in TSC2-deficient cells. Cell Cycle 2014; 13 (03) 371-382
- 14 Lam HC, Baglini CV, Lope AL. et al. p62/SQSTM1 cooperates with hyperactive mTORC1 to regulate glutathione production, maintain mitochondrial integrity, and promote tumorigenesis. Cancer Res 2017; 77 (12) 3255-3267
- 15 Parkhitko A, Myachina F, Morrison TA. et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci U S A 2011; 108 (30) 12455-12460
- 16 Parkhitko AA, Priolo C, Coloff PL. et al. Autophagy-dependent metabolic reprogramming sensitizes TSC2-deficient cells to the antimetabolite 6-aminonicotinamide. Mol Cancer Res 2014; 12: 48-57
- 17 Alesi N, Akl EW, Khabibullin D. et al. TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism. Nat Commun 2021; 12 (01) 4245
- 18 Filippakis H, Belaid A, Siroky B. et al. Vps34-mediated macropinocytosis in Tuberous Sclerosis Complex 2-deficient cells supports tumorigenesis. Sci Rep 2018; 8 (01) 14161
- 19 Ancona S, Orpianesi E, Bernardelli C. et al. Differential modulation of matrix metalloproteinases-2 and -7 in LAM/TSC cells. Biomedicines 2021; 9 (12) 1760
- 20 Chang WY, Clements D, Johnson SR. Effect of doxycycline on proliferation, MMP production, and adhesion in LAM-related cells. Am J Physiol Lung Cell Mol Physiol 2010; 299 (03) L393-L400
- 21 Lee PS, Tsang SW, Moses MA. et al. Rapamycin-insensitive up-regulation of MMP2 and other genes in tuberous sclerosis complex 2-deficient lymphangioleiomyomatosis-like cells. Am J Respir Cell Mol Biol 2010; 42 (02) 227-234
- 22 Li C, Zhou X, Sun Y. et al. Faslodex inhibits estradiol-induced extracellular matrix dynamics and lung metastasis in a model of lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2013; 49 (01) 135-142
- 23 Matsui K, Takeda K, Yu ZX, Travis WD, Moss J, Ferrans VJ. Role for activation of matrix metalloproteinases in the pathogenesis of pulmonary lymphangioleiomyomatosis. Arch Pathol Lab Med 2000; 124 (02) 267-275
- 24 Moir LM, Ng HY, Poniris MH. et al. Doxycycline inhibits matrix metalloproteinase-2 secretion from TSC2-null mouse embryonic fibroblasts and lymphangioleiomyomatosis cells. Br J Pharmacol 2011; 164 (01) 83-92
- 25 Odajima N, Betsuyaku T, Nasuhara Y, Inoue H, Seyama K, Nishimura M. Matrix metalloproteinases in blood from patients with LAM. Respir Med 2009; 103 (01) 124-129
- 26 Gibbons E, Taya M, Wu H. et al. Glycoprotein non-metastatic melanoma protein B promotes tumor growth and is a biomarker for lymphangioleiomyomatosis. Endocr Relat Cancer 2024; 31 (06) e230312
- 27 Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 2015; 34 (17) 2239-2250
- 28 Young L, Lee HS, Inoue Y. et al; MILES Trial Group. Serum VEGF-D a concentration as a biomarker of lymphangioleiomyomatosis severity and treatment response: a prospective analysis of the Multicenter International Lymphangioleiomyomatosis Efficacy of Sirolimus (MILES) trial. Lancet Respir Med 2013; 1 (06) 445-452
- 29 Young LR, Inoue Y, McCormack FX. Diagnostic potential of serum VEGF-D for lymphangioleiomyomatosis. N Engl J Med 2008; 358 (02) 199-200
- 30 Ma D, Bai X, Zou H, Lai Y, Jiang Y. Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with Bcl-2 and Bcl-XL. J Biol Chem 2010; 285 (12) 8621-8627
- 31 Mutvei AP, Nagiec MJ, Hamann JC, Kim SG, Vincent CT, Blenis J. Rap1-GTPases control mTORC1 activity by coordinating lysosome organization with amino acid availability. Nat Commun 2020; 11 (01) 1416
- 32 Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13 (02) 132-141
- 33 Li C, Li N, Liu X. et al. Proapoptotic protein Bim attenuates estrogen-enhanced survival in lymphangioleiomyomatosis. JCI Insight 2016; 1 (19) e86629
- 34 Goncharova EA, Goncharov DA, Li H. et al. mTORC2 is required for proliferation and survival of TSC2-null cells. Mol Cell Biol 2011; 31 (12) 2484-2498
- 35 Li C, Lee PS, Sun Y. et al. Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells. J Exp Med 2014; 211 (01) 15-28
- 36 Liu HJ, Du H, Khabibullin D. et al. mTORC1 upregulates B7-H3/CD276 to inhibit antitumor T cells and drive tumor immune evasion. Nat Commun 2023; 14 (01) 1214
- 37 Babaei-Jadidi R, Dongre A, Miller S. et al. Mast-cell tryptase release contributes to disease progression in lymphangioleiomyomatosis. Am J Respir Crit Care Med 2021; 204 (04) 431-444
- 38 Osterburg AR, Nelson RL, Yaniv BZ. et al. NK cell activating receptor ligand expression in lymphangioleiomyomatosis is associated with lung function decline. JCI Insight 2016; 1 (16) e87270
- 39 Liu HJ, Diesler R, Chami J. et al. Modulation of infiltrating CD206-positive macrophages restricts progression of pulmonary lymphangioleiomyomatosis (LAM). Eur Respir J 2025; 2500084
- 40 Astrinidis A, Li C, Zhang EY. et al. Upregulation of acid ceramidase contributes to tumor progression in tuberous sclerosis complex. JCI Insight 2023; 8 (09) e166850
- 41 Li F, Zhang Y, Lin Z. et al. Targeting SPHK1/S1PR3-regulated S-1-P metabolic disorder triggers autophagic cell death in pulmonary lymphangiomyomatosis (LAM). Cell Death Dis 2022; 13 (12) 1065
- 42 Li C, Liu X, Liu Y. et al. Tuberin regulates prostaglandin receptor-mediated viability, via Rheb, in mTORC1-hyperactive cells. Mol Cancer Res 2017; 15 (10) 1318-1330
- 43 Li C, Zhang E, Sun Y. et al. Rapamycin-insensitive up-regulation of adipocyte phospholipase A2 in tuberous sclerosis and lymphangioleiomyomatosis. PLoS One 2014; 9 (10) e104809
- 44 Priolo C, Ricoult SJ, Khabibullin D. et al. Tuberous sclerosis complex 2 loss increases lysophosphatidylcholine synthesis in lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2015; 53 (01) 33-41
- 45 Olatoke T, Zhang E, Wagner A. et al. STAT1 promotes PD-L1 activation and tumor growth in lymphangioleiomyomatosis. bioRxiv 2024
- 46 Liu HJ, Krymskaya VP, Henske EP. Immunotherapy for lymphangioleiomyomatosis and tuberous sclerosis: progress and future directions. Chest 2019; 156 (06) 1062-1067
- 47 Liu HJ, Lizotte PH, Du H. et al. TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti-PD-1/anti-CTLA-4 immunotherapy. JCI Insight 2018; 3 (08) e98674
- 48 Maisel K, Merrilees MJ, Atochina-Vasserman EN. et al. Immune checkpoint ligand PD-L1 is upregulated in pulmonary lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2018; 59 (06) 723-732
- 49 Harknett EC, Chang WY, Byrnes S. et al. Use of variability in national and regional data to estimate the prevalence of lymphangioleiomyomatosis. QJM 2011; 104 (11) 971-979
- 50 Lynn E, Forde SH, Franciosi AN. et al; Northern European LAM Prevalence Consortium. Updated prevalence of lymphangioleiomyomatosis in Europe. Am J Respir Crit Care Med 2024; 209 (04) 456-459
- 51 Kimura Y, Jo T, Hashimoto Y. et al. Epidemiology of patients with lymphangioleiomyomatosis: A descriptive study using the national database of health insurance claims and specific health checkups of Japan. Respir Investig 2024; 62 (03) 494-502
- 52 Shaw BM, Kopras E, Gupta N. Menstrual cycle-related respiratory symptom variability in patients with lymphangioleiomyomatosis. Ann Am Thorac Soc 2022; 19 (09) 1619-1621
- 53 Rubin R, Baldi BG, Shaw BM. et al. Hemoptysis associated with sexual activity in lymphangioleiomyomatosis. Ann Am Thorac Soc 2024; 21 (12) 1784-1787
- 54 McCormack FX, Gupta N, Finlay GR. et al; ATS/JRS Committee on Lymphangioleiomyomatosis. Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines: Lymphangioleiomyomatosis diagnosis and management. Am J Respir Crit Care Med 2016; 194 (06) 748-761
- 55 McCormack FX, Inoue Y, Moss J. et al; National Institutes of Health Rare Lung Diseases Consortium, MILES Trial Group. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 2011; 364 (17) 1595-1606
- 56 Bissler JJ, McCormack FX, Young LR. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008; 358 (02) 140-151
- 57 Taveira-DaSilva AM, Hathaway O, Stylianou M, Moss J. Changes in lung function and chylous effusions in patients with lymphangioleiomyomatosis treated with sirolimus. Ann Intern Med 2011; 154 (12) 797-805 , W-292–W-293
- 58 Ando K, Kurihara M, Kataoka H. et al. Efficacy and safety of low-dose sirolimus for treatment of lymphangioleiomyomatosis. Respir Investig 2013; 51 (03) 175-183
- 59 Bee J, Fuller S, Miller S, Johnson SR. Lung function response and side effects to rapamycin for lymphangioleiomyomatosis: a prospective national cohort study. Thorax 2018; 73 (04) 369-375
- 60 Cortinas N, Liu J, Kopras E, Memon H, Burkes R, Gupta N. Impact of age, menopause, and sirolimus on spontaneous pneumothoraces in lymphangioleiomyomatosis. Chest 2022; 162 (06) 1324-1327
- 61 Zhou L, Ouyang R, Luo H. et al. Efficacy of sirolimus for the prevention of recurrent pneumothorax in patients with lymphangioleiomyomatosis: a case series. Orphanet J Rare Dis 2018; 13 (01) 168
- 62 Xu W, Yang C, Cheng C. et al. Determinants of progression and mortality in lymphangioleiomyomatosis. Chest 2023; 164 (01) 137-148
- 63 Taveira-DaSilva AM, Johnson SR, Julien-Williams P, Johnson J, Stylianou M, Moss J. Pregnancy in lymphangioleiomyomatosis: clinical and lung function outcomes in two national cohorts. Thorax 2020; 75 (10) 904-907
- 64 Munshi A, Hyslop AD, Kopras EJ, Gupta N. Spontaneous pneumothoraces during pregnancy in patients with lymphangioleiomyomatosis. Respir Investig 2023; 61 (05) 632-635
- 65 Krishna R, Johnson SR, Ataya A. et al. Sirolimus use during pregnancy in women with lymphangioleiomyomatosis. Ann Am Thorac Soc 2025; (E-pub ahead of print)
- 66 Palipana AK, Gecili E, Song S, Johnson SR, Szczesniak RD, Gupta N. Predicting individualized lung disease progression in treatment-naive patients with lymphangioleiomyomatosis. Chest 2023; 163 (06) 1458-1470
- 67 Hao Y, Stuart T, Kowalski MH. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol 2024; 42 (02) 293-304
- 68 Ma A, McDermaid A, Xu J, Chang Y, Ma Q. Integrative methods and practical challenges for single-cell multi-omics. Trends Biotechnol 2020; 38 (09) 1007-1022
- 69 Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods 2022; 19 (05) 534-546
- 70 Hao Y, Hao S, Andersen-Nissen E. et al. Integrated analysis of multimodal single-cell data. Cell 2021; 184 (13) 3573-3587.e29
- 71 Obraztsova K, Basil MC, Rue R. et al. mTORC1 activation in lung mesenchyme drives sex- and age-dependent pulmonary structure and function decline. Nat Commun 2020; 11 (01) 5640
- 72 Minor BMN, LeMoine D, Seger C. et al. Estradiol augments tumor-induced neutrophil production to promote tumor cell actions in lymphangioleiomyomatosis models. Endocrinology 2023; 164 (06) bqad061
- 73 Lin SM, Rue R, Mukhitov AR. et al. Hyperactive mTORC1 in lung mesenchyme induces endothelial cell dysfunction and pulmonary vascular remodeling. J Clin Invest 2023; 134 (04) e172116
- 74 Al Mahi N, Zhang EY, Sherman S, Yu JJ, Medvedovic M. Connectivity Map analysis of a single-cell RNA-sequencing-derived transcriptional signature of mTOR signaling. Int J Mol Sci 2021; 22 (09) 4371
- 75 Espín R, Baiges A, Blommaert E. et al. Heterogeneity and cancer-related features in lymphangioleiomyomatosis cells and tissue. Mol Cancer Res 2021; 19 (11) 1840-1853
- 76 Farré X, Espín R, Baiges A. et al. Evidence for shared genetic risk factors between lymphangioleiomyomatosis and pulmonary function. ERJ Open Res 2022; 8 (01) 00375-2021
- 77 Wang H, Hu D, Cheng C. et al. Synergistic effects of mTOR inhibitors with VEGFR3 inhibitors on the interaction between TSC2-mutated cells and lymphatic endothelial cells. Sci China Life Sci 2025; 68 (06) 1676-1688
- 78 Tang Y, Kwiatkowski DJ, Henske EP. Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment. Nat Commun 2022; 13 (01) 5018
- 79 Daley GQ. Stem cells and the evolving notion of cellular identity. Philos Trans R Soc Lond B Biol Sci 2015; 370 (1680): 20140376
- 80 Fiers MWEJ, Minnoye L, Aibar S, Bravo González-Blas C, Kalender Atak Z, Aerts S. Mapping gene regulatory networks from single-cell omics data. Brief Funct Genomics 2018; 17 (04) 246-254
- 81 Aibar S, González-Blas CB, Moerman T. et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 2017; 14 (11) 1083-1086
- 82 Moerman T, Aibar Santos S, Bravo González-Blas C. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 2019; 35 (12) 2159-2161
- 83 Bravo González-Blas C, De Winter S, Hulselmans G. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat Methods 2023; 20 (09) 1355-1367
- 84 Zhang L, Zhang J, Nie Q. DIRECT-NET: An efficient method to discover cis-regulatory elements and construct regulatory networks from single-cell multiomics data. Sci Adv 2022; 8 (22) eabl7393
- 85 Fleck JS, Jansen SMJ, Wollny D. et al. Inferring and perturbing cell fate regulomes in human brain organoids. Nature 2023; 621 (7978): 365-372
- 86 Kamimoto K, Stringa B, Hoffmann CM, Jindal K, Solnica-Krezel L, Morris SA. Dissecting cell identity via network inference and in silico gene perturbation. Nature 2023; 614 (7949): 742-751
- 87 Duren Z, Chen X, Xin J, Wang Y, Wong WH. Time course regulatory analysis based on paired expression and chromatin accessibility data. Genome Res 2020; 30 (04) 622-634
- 88 Guo M, Du Y, Gokey JJ. et al. Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nat Commun 2019; 10 (01) 37
- 89 Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: A pipeline for single-cell RNA-seq profiling analysis. PLoS Comput Biol 2015; 11 (11) e1004575
- 90 Iacono G, Massoni-Badosa R, Heyn H. Single-cell transcriptomics unveils gene regulatory network plasticity. Genome Biol 2019; 20 (01) 110
- 91 Guo M, Xu Y. Single-cell transcriptome analysis using SINCERA pipeline. Methods Mol Biol 2018; 1751: 209-222
- 92 Gokey JJ, Snowball J, Sridharan A. et al. YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1. iScience 2021; 24 (09) 102967
- 93 Lo K, Raftery AE, Dombek KM. et al. Integrating external biological knowledge in the construction of regulatory networks from time-series expression data. BMC Syst Biol 2012; 6: 101
- 94 Nazri A, Lio P. Investigating meta-approaches for reconstructing gene networks in a mammalian cellular context. PLoS One 2012; 7 (01) e28713
- 95 Chan TE, Stumpf MPH, Babtie AC. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 2017; 5 (03) 251-267.e3
- 96 Sikkema L, Ramírez-Suástegui C, Strobl DC. et al; Lung Biological Network Consortium. An integrated cell atlas of the lung in health and disease. Nat Med 2023; 29 (06) 1563-1577
- 97 Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Med 2022; 14 (01) 68
- 98 Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature 2021; 596 (7871): 211-220
- 99 Chen TY, You L, Hardillo JAU, Chien MP. Spatial transcriptomic technologies. Cells 2023; 12 (16) 2042
- 100 He S, Bhatt R, Brown C. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat Biotechnol 2022; 40 (12) 1794-1806
- 101 Ståhl PL, Salmén F, Vickovic S. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016; 353 (6294): 78-82
- 102 Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015; 348 (6233): aaa6090
- 103 Koc-Gunel S, Liu EC, Gautam LK. et al. Targeting fibroblast-endothelial cell interactions in LAM pathogenesis using 3D spheroid models and spatial transcriptomics. JCI Insight 2025; 10 (06) e187899
- 104 Chen K, Zhao S, Guo M. et al. Decoding lymphangioleiomyomatosis (LAM) niche environment via integrative analysis of single cell multiomics and spatial transcriptomics. bioRxiv 2025
- 105 Guo M, Morley MP, Jiang C. et al; NHLBI LungMAP Consortium. Guided construction of single cell reference for human and mouse lung. Nat Commun 2023; 14 (01) 4566
- 106 Delorey TM, Ziegler CGK, Heimberg G. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021; 595 (7865): 107-113
- 107 Du Y, Guo M, Wu Y. et al. Lymphangioleiomyomatosis (LAM) Cell Atlas. Thorax 2023; 78 (01) 85-87
- 108 Young LR, Vandyke R, Gulleman PM. et al. Serum vascular endothelial growth factor-D prospectively distinguishes lymphangioleiomyomatosis from other diseases. Chest 2010; 138 (03) 674-681
- 109 Gupta N, Finlay GA, Kotloff RM. et al; ATS Assembly on Clinical Problems. Lymphangioleiomyomatosis diagnosis and management: High-resolution chest computed tomography, transbronchial lung biopsy, and pleural disease management. An Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guideline. Am J Respir Crit Care Med 2017; 196 (10) 1337-1348
- 110 Johnson SR, Cordier JF, Lazor R. et al; Review Panel of the ERS LAM Task Force. European Respiratory Society guidelines for the diagnosis and management of lymphangioleiomyomatosis. Eur Respir J 2010; 35 (01) 14-26
- 111 Holz MK, Slattery AD, Pontz EJ. et al. Lymphangioleiomyomatosis (LAM) Patient Research Priorities (LAM-PREP): Developing a patient-centered research agenda. CHEST Pulm 2025; 3: 100184
- 112 Wang Z, Liu X, Wang W. et al. A multi–omics study of diagnostic markers and the unique inflammatory tumor micro–environment involved in tuberous sclerosis complex–related renal angiomyolipoma. Int J Oncol 2022; 61 (05) 132
- 113 Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 2010; 5 (09) e12776
- 114 Li Y, Liu X, Guo L. et al. SpaGRN: Investigating spatially informed regulatory paths for spatially resolved transcriptomics data. Cell Syst 2025; 16 (04) 101243
- 115 Wang Y, Zhou F, Guan J. SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network. Bioinformatics 2024; 40 (07) btae433