RSS-Feed abonnieren
DOI: 10.1055/a-2703-4175
Evaluation of Deficiency and Excessive Condition of Thrombin Burst Using Laboratory Tests
Authors
Funding Information This research was funded by a Grant-in-Aid from the Ministry of Health, Labor and Welfare of Japan (21FC1008).

ABSTRACT
Thrombin burst is an important mechanism for hemostasis, which is enhancement and amplification of the coagulation cycle, especially activation of coagulation factors XI, VIII, and V by thrombin on the activated platelets. Thrombin burst monitoring has been performed using hemostatic molecular markers, thrombin generation test (TGT), thromboelastography (TEG), and clot waveform analysis (CWA). In particular, CWA is a routine laboratory test that is neither time consuming nor expensive. Arterial thromboses, such as acute myocardial thrombosis and acute cerebral thrombosis, are associated with excessive condition of thrombin burst, and clotting time using a small amount of thrombin in CWA can detect activated or procoagulant platelets. Thrombin burst deficiency is caused by abnormalities of platelets such as thrombocytopenia or clotting factors such as hemophilia and acquired clotting factor deficiency, showing different CWA patterns. Patients with clotting factor VIII inhibitors are treated with bypass therapy, such as recombinant activated clotting factor VII and activated prothrombin complex concentrate, which can be monitored by CWA, TEG, or TGT.
Keywords
clot waveform analysis - coagulation factor VIII - activated platelets - thrombin burst - bleeding diseasesPublikationsverlauf
Eingereicht: 13. Mai 2025
Angenommen: 16. September 2025
Accepted Manuscript online:
18. September 2025
Artikel online veröffentlicht:
01. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Veldman A, Hoffman M, Ehrenforth S. New insights into the coagulation system and implications for new therapeutic options with recombinant factor VIIa. Curr Med Chem 2003; 10 (10) 797-811
- 2 Silverberg SA, Nemerson Y. The control of prothrombin conversion. Kinetic control by mechanisms inherent in two activation pathways. Biochemistry 1975; 14 (12) 2636-2644
- 3 Roberts HR, Monroe DM, Oliver JA, Chang JY, Hoffman M. Newer concepts of blood coagulation. Haemophilia 1998; 4 (04) 331-334
- 4 Lämmle B, Griffin JH. Formation of the fibrin clot: the balance of procoagulant and inhibitory factors. Clin Haematol 1985; 14 (02) 281-342
- 5 Schreuder M, Reitsma PH, Bos MHA. Blood coagulation factor Va's key interactive residues and regions for prothrombinase assembly and prothrombin binding. J Thromb Haemost 2019; 17 (08) 1229-1239
- 6 Hedner U. NovoSeven as a universal haemostatic agent. Blood Coagul Fibrinolysis 2000; 11 (Suppl. 01) S107-S111
- 7 Mathew P, Winter SS, Frost JD, Hanrahan J, Schwartz M, Jones JE. Novel applications of recombinant factor VIIa for the management of pediatric coagulopathic diseases. J Pediatr Hematol Oncol 2003; 25 (06) 499-502
- 8 Hedner U, Erhardtsen E. Potential role of recombinant factor VIIa as a hemostatic agent. Clin Adv Hematol Oncol 2003; 1 (02) 112-119
- 9 Wada H, Matsumoto T, Ohishi K, Shiraki K, Shimaoka M. Update on the clot waveform analysis. Clin Appl Thromb Hemost 2020; 26: 1076029620912027
- 10 Boström SL, Hansson GF, Sarich TC, Wolzt M. The inhibitory effect of melagatran, the active form of the oral direct thrombin inhibitor ximelagatran, compared with enoxaparin and r-hirudin on ex vivo thrombin generation in human plasma. Thromb Res 2004; 113 (01) 85-91
- 11 Altman R, Scazziota AS, Herrera MdeL, Gonzalez C. Thrombin generation by activated factor VII on platelet activated by different agonists. Extending the cell-based model of hemostasis. Thromb J 2006; 4: 5
- 12 Långström S, Wartiovaara-Kautto U, Andersson S, Heikinheimo M, Petäjä J. Exchange transfusion activates coagulation and alters the coagulation profile in newborn infants. Thromb Haemost 2006; 96 (02) 142-148
- 13 Freyburger G, Macouillard G, Labrouche S, Sztark F. Coagulation parameters in patients receiving dabigatran etexilate or rivaroxaban: two observational studies in patients undergoing total hip or total knee replacement. Thromb Res 2011; 127 (05) 457-465
- 14 Savage SA, Zarzaur BL, Pohlman TH. et al. Clot dynamics and mortality: the MA-R ratio. J Trauma Acute Care Surg 2017; 83 (04) 628-634
- 15 Almaghrabi TS, McDonald MM, Cai C. et al. Cocaine use is associated with more rapid clot formation and weaker clot strength in acute stroke patients. Int J Cerebrovasc Dis Stroke 2019; 2 (01) 110
- 16 Wada H, Ichikawa Y, Ezaki M. et al. The reevaluation of thrombin time using a clot waveform analysis. J Clin Med 2021; 10 (21) 4840
- 17 Wada H, Shiraki K, Matsumoto T. et al. A clot waveform analysis of thrombin time using a small amount of thrombin is useful for evaluating the clotting activity of plasma independent of the presence of emicizumab. J Clin Med 2022; 11 (20) 6142
- 18 Monroe DM, Hoffman M. What does it take to make the perfect clot?. Arterioscler Thromb Vasc Biol 2006; 26 (01) 41-48
- 19 Sidonio Jr RF, Hoffman M, Kenet G, Dargaud Y. Thrombin generation and implications for hemophilia therapies: a narrative review. Res Pract Thromb Haemost 2022; 7 (01) 100018
- 20 Monroe DM, Hoffman M, Roberts HR. Platelets and thrombin generation. Arterioscler Thromb Vasc Biol 2002; 22 (09) 1381-1389
- 21 Chen VM, Hogg PJ. Encryption and decryption of tissue factor. J Thromb Haemost 2013; 11 (Suppl. 01) 277-284
- 22 Goel MS, Diamond SL. Factor VIIa-mediated tenase function on activated platelets under flow. J Thromb Haemost 2004; 2 (08) 1402-1410
- 23 Pathak A, Zhao R, Monroe DM. et al. Thrombin generation in vascular tissue. J Thromb Haemost 2006; 4 (01) 60-67
- 24 Kario K, Miyata T, Sakata T, Matsuo T, Kato H. Fluorogenic assay of activated factor VII. Plasma factor VIIa levels in relation to arterial cardiovascular diseases in Japanese. Arterioscler Thromb 1994; 14 (02) 265-274
- 25 Orfeo T, Butenas S, Brummel-Ziedins KE, Mann KG. The tissue factor requirement in blood coagulation. J Biol Chem 2005; 280 (52) 42887-42896
- 26 Peyrou V, Lormeau JC, Hérault JP, Gaich C, Pfliegger AM, Herbert JM. Contribution of erythrocytes to thrombin generation in whole blood. Thromb Haemost 1999; 81 (03) 400-406
- 27 Farndale RW. Collagen-induced platelet activation. Blood Cells Mol Dis 2006; 36 (02) 162-165
- 28 Bates ER, Lau WC, Angiolillo DJ. Clopidogrel-drug interactions. J Am Coll Cardiol 2011; 57 (11) 1251-1263
- 29 Fender AC, Rauch BH, Geisler T, Schrör K. Protease-activated receptor PAR-4: an inducible switch between thrombosis and vascular inflammation?. Thromb Haemost 2017; 117 (11) 2013-2025
- 30 Agbani EO, Poole AW. Procoagulant platelets: generation, function, and therapeutic targeting in thrombosis. Blood 2017; 130 (20) 2171-2179
- 31 Kaiser R, Dewender R, Mulkers M. et al. Procoagulant platelet activation promotes venous thrombosis. Blood 2024; 144 (24) 2546-2553
- 32 Momeni A, Filiaggi MJ. Degradation and hemostatic properties of polyphosphate coacervates. Acta Biomater 2016; 41: 328-341
- 33 Suess PM, Smith SA, Morrissey JH. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost 2020; 18 (11) 3043-3052
- 34 Gavva C, Yates SG, Rambally S, Sarode R. Transfusion management of factor V deficiency: three case reports and review of the literature. Transfusion 2016; 56 (07) 1745-1749
- 35 Hua VM, Chen VM. Procoagulant platelets and the pathways leading to cell death. Semin Thromb Hemost 2015; 41 (04) 405-412
- 36 Jurk K, Kehrel BE. [Pathophysiology and biochemistry of platelets]. Internist (Berl) 2010; 51 (09) 1086 , 1088–1092, 1094
- 37 Agbani EO, Poole AW. Aquaporins in platelet function. Platelets 2021; 32 (07) 895-901
- 38 van Geffen JP, Swieringa F, Heemskerk JW. Platelets and coagulation in thrombus formation: aberrations in the Scott syndrome. Thromb Res 2016; 141 (Suppl. 02) S12-S16
- 39 Yang H, Kim A, David T. et al. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 2012; 151 (01) 111-122
- 40 Schmaier AA, Anderson PF, Chen SM. et al. TMEM16E regulates endothelial cell procoagulant activity and thrombosis. J Clin Invest 2023; 133 (11) e163808
- 41 Tohidi-Esfahani I, Lee CSM, Liang HPH, Chen VMY. Procoagulant platelets: laboratory detection and clinical significance. Int J Lab Hematol 2020; 42 (Suppl. 01) 59-67
- 42 Ito T, Kakuuchi M, Maruyama I. Endotheliopathy in septic conditions: mechanistic insight into intravascular coagulation. Crit Care 2021; 25 (01) 95
- 43 Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 1990; 76 (01) 1-16
- 44 Biasucci LM, Liuzzo G, Caligiuri G. et al. Temporal relation between ischemic episodes and activation of the coagulation system in unstable angina. Circulation 1996; 93 (12) 2121-2127
- 45 Kapur R, Hoffman CJ, Bhushan V, Haltin MB. Postprandial elevation of activated factor VII in young adults. Arterioscler Thromb Vasc Biol 1996; 16 (11) 1327-1332
- 46 Raivio P, Kuitunen A, Suojaranta-Ylinen R, Lassila R, Petäjä J. Thrombin generation during reperfusion after coronary artery bypass surgery associates with postoperative myocardial damage. J Thromb Haemost 2006; 4 (07) 1523-1529
- 47 Akar JG, Jeske W, Wilber DJ. Acute onset human atrial fibrillation is associated with local cardiac platelet activation and endothelial dysfunction. J Am Coll Cardiol 2008; 51 (18) 1790-1793
- 48 Contreras-García A, D'Elía NL, Desgagné M. et al. Synthetic anionic surfaces can replace microparticles in stimulating burst coagulation of blood plasma. Colloids Surf B Biointerfaces 2019; 175: 596-605
- 49 Chandler WL, Velan T. Estimating the rate of thrombin and fibrin generation in vivo during cardiopulmonary bypass. Blood 2003; 101 (11) 4355-4362
- 50 Wada H, Kobayashi T, Abe Y. et al. Elevated levels of soluble fibrin or D-dimer indicate high risk of thrombosis. J Thromb Haemost 2006; 4 (06) 1253-1258
- 51 Ota S, Wada H, Abe Y. et al. Elevated levels of prothrombin fragment 1 + 2 indicate high risk of thrombosis. Clin Appl Thromb Hemost 2008; 14 (03) 279-285
- 52 Ezaki M, Wada H, Ichikawa Y. et al. Plasma soluble fibrin is useful for the diagnosis of thrombotic diseases. J Clin Med 2023; 12 (07) 2597
- 53 Nishigaki A, Ichikawa Y, Ezaki M. et al. Soluble C-type lectin-like receptor 2 elevation in patients with acute cerebral infarction. J Clin Med 2021; 10 (15) 3408
- 54 Wada H, Shiraki K, Ichikawa Y. et al. Implications of soluble C-type lectin-like receptor 2 levels in patients with coronavirus disease 2019-associated with thrombosis. Thromb Haemost 2025; In press
- 55 Tripodi A. Thrombin generation assay and its application in the clinical laboratory. Clin Chem 2016; 62 (05) 699-707
- 56 Wu Y, Lu Y, Zhang J. Thrombin generation assay: the present and the future. Blood Coagul Fibrinolysis 2023; 34 (01) 1-7
- 57 Hayakawa M, Gando S, Ono Y. et al. Noble-Collip drum trauma induces disseminated intravascular coagulation but not acute coagulopathy of trauma-shock. Shock 2015; 43 (03) 261-267
- 58 Salvagno GL, Berntorp E. Thrombin generation testing for monitoring hemophilia treatment: a clinical perspective. Semin Thromb Hemost 2010; 36 (07) 780-790
- 59 Tang N, Jin X, Sun Z, Jian C. Effects of hemolysis and lipemia interference on kaolin-activated thromboelastography, and comparison with conventional coagulation tests. Scand J Clin Lab Invest 2017; 77 (02) 98-103
- 60 Bauer NB, Eralp O, Moritz A. Effect of hemolysis on canine kaolin-activated thromboelastography values and ADVIA 2120 platelet activation indices. Vet Clin Pathol 2010; 39 (02) 180-189
- 61 Wada H, Shiraki K, Matsumoto T, Shimpo H, Shimaoka M. Clot waveform analysis for hemostatic abnormalities. Ann Lab Med 2023; 43 (06) 531-538
- 62 Harrington J, Zarzaur BL, Fox EE, Wade CE, Holcomb JB, Savage SA. Variations in clot phenotype following injury: the MA-R ratio and fragile clots. J Trauma Acute Care Surg 2022; 92 (03) 504-510
- 63 Wada H, Shiraki K, Ichikawa Y, Matsumoto T, Shimpo H, Shimaoka M. Clinical application of clot waveform analysis. Clin Appl Thromb Hemost 2025; 31: 10 760296251331606
- 64 Masuda J, Wada H, Kato T. et al. Enhanced hypercoagulability using clot waveform analysis in patients with acute myocardial infarction and acute cerebral infarction. J Clin Med 2024; 13 (23) 7181
- 65 Wada H, Shiraki K, Matsumoto T, Ohishi K, Shimpo H, Shimaoka M. Effects of platelet and phospholipids on clot formation activated by a small amount of tissue factor. Thromb Res 2020; 193: 146-153
- 66 Wada H, Shiraki K, Matsumoto T. et al. Evaluating factor VIII concentrates using clot waveform analysis. J Clin Med 2024; 13 (13) 3857
- 67 Wada H, Ichikawa Y, Ezaki M. et al. Clot waveform analysis demonstrates low blood coagulation ability in patients with idiopathic thrombocytopenic purpura. J Clin Med 2021; 10 (24) 5987
- 68 Sekar R, Mimoun A, Bou-Jaoudeh M. et al. High factor VIII concentrations interfere with glycoprotein VI-mediated platelet activation in vitro. J Thromb Haemost 2024; 22 (05) 1489-1495
- 69 Pezeshkpoor B, Fischer R, Preisler B. et al. Modulation of haemostatic balance in combined von Willebrand disease and antithrombin deficiency: a comprehensive family study. Haemophilia 2025; 31 (01) 140-147
- 70 Matsumoto T, Wada H, Shiraki K. et al. The evaluation of clot waveform analyses for assessing hypercoagulability in patients treated with factor VIII concentrate. J Clin Med 2023; 12 (19) 6320
- 71 Abshire TC. Dose optimization of recombinant factor VIIa for control of mild to moderate bleeds in inhibitor patients: improved efficacy with higher dosing. Semin Hematol 2004; 41 (1, Suppl 1): 3-7
- 72 Suzuki K, Wada H, Matsumoto T. et al. Usefulness of the APTT waveform for the diagnosis of DIC and prediction of the outcome or bleeding risk. Thromb J 2019; 17: 12
- 73 Poon MC, Di Minno G, d'Oiron R, Zotz R. New insights into the treatment of Glanzmann thrombasthenia. Transfus Med Rev 2016; 30 (02) 92-99
- 74 Monroe DM, Hoffman M, Allen GA, Roberts HR. The factor VII-platelet interplay: effectiveness of recombinant factor VIIa in the treatment of bleeding in severe thrombocytopathia. Semin Thromb Hemost 2000; 26 (04) 373-377
- 75 Kamon T, Horie S, Inaba T. et al. The detection of hypercoagulability in patients with acute cerebral infarction using a clot waveform analysis. Clin Appl Thromb Hemost 2023; 29: 10 760296231161591
- 76 Kobayashi M, Wada H, Fukui S. et al. A clot waveform analysis showing a hypercoagulable state in patients with malignant neoplasms. J Clin Med 2021; 10 (22) 5352
- 77 Nagle EL, Tsu LV, Dager WE. Bivalirudin for anticoagulation during hypothermic cardiopulmonary bypass and recombinant factor VIIa for iatrogenic coagulopathy. Ann Pharmacother 2011; 45 (09) e47
- 78 Wong RK, Sleep JR, Visner AJ. et al. Thrombography reveals thrombin generation potential continues to deteriorate following cardiopulmonary bypass surgery despite adequate hemostasis. J Extra Corpor Technol 2011; 43 (01) 19-25
- 79 Maeda K, Wada H, Shinkai T, Tanemura A, Matsumoto T, Mizuno S. Evaluation of hemostatic abnormalities in patients who underwent major hepatobiliary pancreatic surgery using activated partial thromboplastin time-clot waveform analysis. Thromb Res 2021; 201: 154-160
- 80 Ranucci M, Sitzia C, Baryshnikova E. et al. Covid-19-associated coagulopathy: biomarkers of thrombin generation and fibrinolysis leading the outcome. J Clin Med 2020; 9 (11) 3487
- 81 MacArthur TA, Goswami J, Moon Tasson L. et al. Quantification of von Willebrand factor and ADAMTS-13 after traumatic injury: a pilot study. Trauma Surg Acute Care Open 2021; 6 (01) e000703
- 82 Elizondo P, Fogelson AL. A mathematical model of venous thrombosis initiation. Biophys J 2016; 111 (12) 2722-2734
- 83 Koutroumpi S, Spiezia L, Albiger N. et al. Thrombin generation in Cushing's syndrome: do the conventional clotting indices tell the whole truth?. Pituitary 2014; 17 (01) 68-75
- 84 Fritsch P, Kleber M, Rosenkranz A. et al. Haemostatic alterations in overweight children: associations between metabolic syndrome, thrombin generation, and fibrinogen levels. Atherosclerosis 2010; 212 (02) 650-655
- 85 Fritsch P, Kleber M, Schlagenhauf A. et al. Normalization of haemostatic alterations in overweight children with weight loss due to lifestyle intervention. Atherosclerosis 2011; 216 (01) 170-173
- 86 Hedner U. Dosing with recombinant factor viia based on current evidence. Semin Hematol 2004; 41 (1, Suppl 1): 35-39
- 87 Croom KF, McCormack PL. Recombinant factor VIIa (eptacog alfa): a review of its use in congenital hemophilia with inhibitors, acquired hemophilia, and other congenital bleeding disorders. BioDrugs 2008; 22 (02) 121-136
- 88 Parameswaran R, Shapiro AD, Gill JC, Kessler CM. HTRS Registry Investigators. Dose effect and efficacy of rFVIIa in the treatment of haemophilia patients with inhibitors: analysis from the Hemophilia and Thrombosis Research Society Registry. Haemophilia 2005; 11 (02) 100-106
- 89 Varadi K, Tangada S, Loeschberger M. et al. Pro- and anticoagulant factors facilitate thrombin generation and balance the haemostatic response to FEIBA(®) in prophylactic therapy. Haemophilia 2016; 22 (04) 615-624
- 90 Schmid S, Friesenecker B, Lorenz I. et al. Administration of recombinant activated factor VII (NovoSeven) in three cases of uncontrolled bleeding caused by disseminated intravascular coagulopathy. Clin Appl Thromb Hemost 2007; 13 (03) 313-317
- 91 Hicks K, Peng D, Gajewski JL. Treatment of diffuse alveolar hemorrhage after allogeneic bone marrow transplant with recombinant factor VIIa. Bone Marrow Transplant 2002; 30 (12) 975-978
- 92 Wilson SJ, Bellamy MC, Giannoudis PV. The safety and efficacy of the administration of recombinant activated factor VII in major surgery and trauma patients. Expert Opin Drug Saf 2005; 4 (03) 557-570
- 93 Oldenburg J, Mahlangu JN, Kim B. et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med 2017; 377 (09) 809-818
- 94 Mahlangu J, Oldenburg J, Paz-Priel I. et al. Emicizumab prophylaxis in patients who have hemophilia A without inhibitors. N Engl J Med 2018; 379 (09) 811-822
- 95 Savage SA, Zarzaur BL, Brewer BL. et al. 1: 1 Transfusion strategies are right for the wrong reasons. J Trauma Acute Care Surg 2017; 82 (05) 845-852
- 96 Jumeau C, Rupin A, Chieng-Yane P. et al. Direct thrombin inhibitors prevent left atrial remodeling associated with heart failure in rats. JACC Basic Transl Sci 2016; 1 (05) 328-339
- 97 Perzborn E, Roehrig S, Straub A, Kubitza D, Mueck W, Laux V. Rivaroxaban: a new oral factor Xa inhibitor. Arterioscler Thromb Vasc Biol 2010; 30 (03) 376-381
- 98 Bendetowicz AV, Kai H, Knebel R. et al. The effect of subcutaneous injection of unfractionated and low molecular weight heparin on thrombin generation in platelet rich plasma—a study in human volunteers. Thromb Haemost 1994; 72 (05) 705-712
- 99 Franchini M, Lippi G. Antagonists of activated factor X and thrombin: innovative antithrombotic agents. Curr Vasc Pharmacol 2007; 5 (02) 121-128
- 100 Dean CL. An overview of heparin monitoring with the anti-Xa assay. Methods Mol Biol 2023; 2663: 343-353
- 101 Horton S, Augustin S. Activated clotting time (ACT). Methods Mol Biol 2013; 992: 155-167
- 102 Hérault JP, Dol F, Gaich C, Bernat A, Herbert JM. Effect of clopidogrel on thrombin generation in platelet-rich plasma in the rat. Thromb Haemost 1999; 81 (06) 957-960