Subscribe to RSS
DOI: 10.1055/a-2703-6179
High-Resolution Peripheral Quantitative Computed Tomography (HR-pQCT) as a new Method for Human Osteoarcheology
Hochauflösende periphere quantitative Computertomographie (HR-pQCT) als neue Methode in der humanen OsteoarchäologieAuthors

Abstract
In (pre)historic human bones, analysis of bone density and microstructure may be useful for anthropological research to assess skeletal health as well as physical fitness and handedness. Physical strain between arms and legs can be compared. HR-pQCT may provide information on such parameters, but has not yet been used in (pre)historic bones without soft tissue and bone marrow. Three macroscopically intact skeletons of young persons who died ca. 120–200 years ago at an age of approximately 20 years could be identified in the medico-historical anatomical collection in Marburg/Germany. Distal radii und tibiae were measured using HR-pQCT (XtremeCT, Scanco Medical) and analyzed with the standard evaluation script used for patients in clinical routine. We analyzed the quality of the images of the bones in comparison to two healthy living person of the same age group and investigated for which quantitative parameters plausible results could be calculated. The quality of the images was completely comparable between the historical bones and those of young living persons. Calculation of trabecular number, cortical thickness and cortical bone density revealed plausible results comparable to young living persons (77.5±26.9% vs. 84.4±28.3% of sex-related mean for persons 20–29 years old; n.s. [pooled data]). Calculation of trabecular bone volume / tissue volume and trabecular thickness, however, revealed unplausible results (−29.1±24.1% vs. 104.9±11.7; p<0.001). In conclusion, HR-pQCT generates images of historical bones in good quality. Calculation of trabecular number, cortical thickness, and cortical bone density reveals plausible results, whereas this is not the case for trabecular bone volume/tissue volume and trabecular thickness. This can be explained by the calculation method for these bone parameters, which is affected by the absence of soft tissue and bone marrow.
Zusammenfassung
Die Analyse der Knochendichte und -mikrostruktur (prä)historischer menschlicher Knochen kann Informationen zu Knochengesundheit, körperlicher Fitness, Belastung und Händigkeit erbringen. Die Eignung der HR-pQCT zur Untersuchung von (prä)historischen Knochen ohne Knochenmark und Weichteile wird hier fallbasiert untersucht. Drei makroskopisch intakte Skelette junger Personen, die vor ca. 120–200 Jahren im Alter von etwa 20 Jahren verstarben, wurden in der medizinhistorischen Sammlung in Marburg identifiziert. Distale Radii und Tibiae wurden mittels HR-pQCT (XtremeCT, Scanco Medical) unter Verwendung der Standardsoftware vermessen. Die Qualität der Bilder der Knochen wurde mit derjenigen zweier gesunder Personen gleichen Alters verglichen, es wurde geprüft, zu welchen quantitativen Parametern plausible Ergebnisse berechnet werden konnten. Die Qualität der Bildgebung zeigte sich vergleichbar. Die Berechnung der Parameter “trabecular number”, “cortical thickness” und “cortical bone density” ergab plausible Ergebnisse (77,5±26,9% vs. 84,4±28,3% des geschlechtsbezogenen Mittelwertes [20–29 Jahre; zusammengefasste Daten]). Unplausible Befunde ergaben sich für “trabecular bone volume / tissue volume” und “trabecular thickness” (−29,1±24,1% vs. 104,9±11,7; p<0,001). HR-pQCT erzeugt Bilder historischer Knochen in guter Qualität und ermöglicht die Berechnung der Parameter “trabecular number”, “cortical thickness” und “cortical bone density”. Dies ist nicht der Fall für “trabecular bone volume / tissue volume” und “trabecular thickness”, zu erklären durch das Fehlen von Weichteilen und Knochenmark.
Schlüsselwörter
Osteoarchäologie - Knochendichte - Computertomographie - Knochenstruktur - BildgebungPublication History
Received: 23 August 2025
Accepted: 15 September 2025
Article published online:
23 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
- 
            References
- 1 Larsen CS. Bioarchaeology: The lives and lifestyles of past people. J Archaeol Res 2002; 10: 119-166 Available from http://www.jstor.org/stable/41053183
- 2 Hodder I, Hutson S. Reading the past: Current approaches to interpretation in archaeology. Cambridge: Cambridge University Press; 2003: i-vi
- 3 Cheverko CM, Prince-Buitenhuys JR, Hubbe, M, editors. Theoretical approaches in bioarchaeology. 1st ed.. London: Routledge; 2020.
- 4 Rosendahl W, Wieczorek A. Mummies of the world. English ed. Munich: Prestel; 2010
- 5 Pommerening T. Mummies, mummification techniques, and the cult of the dead in Ancient Egypt. A chronological overview. In: Mummies of the world (English ed.). Munich: Prestel;; 2010: 74-91
- 6 Essel E, Zavala EI, Schulz-Kornas E. et al. Ancient human DNA recovered from a Palaeolithic pendant. Nature 2023; 618: 328-332
- 7 Bello SM, Wallduck R, Parfitt SA, Stringer CB. An Upper Palaeolithic engraved human bone associated with ritualistic cannibalism. PLoS One 2017; 12: e0182127
- 8 Kann PH, Münzel M. Urgeschichte. In: Münzel M, editor. Anthropophagie oder: Wer sind die wahren Kannibalen. Marburg: Blaues Schloss; 2019: 29-48
- 9 Mirazón Lahr M, Rivera F, Power RK. et al. Inter-group violence among early Holocene hunter-gatherers of West Turkana, Kenya. Nature 2016; 529: 394-398
- 10 Janković I, Balen J, Ahern JCM. et al. Prehistoric massacre revealed. Perimortem cranial trauma from Potočani, Croatia. Anthropol Anz 2017; 74: 131-141
- 11 Dittmar JM, Mitchell PD, Cessford C. et al. Fancy shoes and painful feet: Hallux valgus and fracture risk in medieval Cambridge, England. Int J Paleopathol 2021; 35: 90-100
- 12 Dittmar JM, Mitchell PD, Cessford C. et al. Medieval injuries: Skeletal trauma as an indicator of past living conditions and hazard risk in Cambridge, England. Am J Phys Anthropol 2021; 175: 626-645
- 13 Alt KW, Jeunesse C, Buitrago-Téllez CH. et al. Evidence for stone age cranial surgery. Nature 1997; 387: 360
- 14 Hlavenková L, Teasdale MD, Gábor O. et al. Childhood bone tuberculosis from Roman Pécs, Hungary. Homo 2015; 66: 27-37
- 15 Mays S, Turner-Walker G, Syversen U. Osteoporosis in a population from medieval Norway. Am J Phys Anthropol 2006; 131: 343-351
- 16 Curate F, Albuquerque A, Correia J. et al. A glimpse from the past: osteoporosis and osteoporotic fractures in a Portuguese identified skeletal sample. Acta Reumatol Port 2013; 38: 20-27
- 17 Fritsch KO, Hamoud H, Allam AH. et al. The orthopedic diseases of ancient Egypt. Anat Rec 2015; 298: 1036-1046
- 18 Bowers A, Gowland R, Hind K. Rickets, resorption and revolution: An investigation into the relationship between vitamin D deficiency in childhood and osteoporosis in adulthood in an 18th–19th century population. Int J Paleopathol 2024; 47: 27-42
- 19 Snoddy AME, Buckley HR, Elliott GE. et al. Macroscopic features of scurvy in human skeletal remains: A literature synthesis and diagnostic guide. Am J Phys Anthropol 2018; 167: 876-895
- 20 Malis SW, Wilson JA, Zuckerman MK. et al. Compromised health: Examining growth and health in a late antique Roman infant and child cemetery. Am J Biol Anthropol 2024; 184: e24925
- 21 Zhang S, Huang X, Zhao X. et al. Effect of exercise on bone mineral density among patients with osteoporosis and osteopenia: A systematic review and network meta-analysis. J Clin Nurs 2022; 31: 2100-2111
- 22 Tsuji S, Tsunoda N, Yata H. et al. Relation between grip strength and radial bone mineral density in young athletes. Arch Phys Med Rehabil 1995; 76: 234-238
- 23 Siminoski K, Lee KC, Abish S. et al. Canadian STOPP Consortium (National Pediatric Bone Health Working Group) The development of bone mineral lateralization in the arms. Osteoporos Int 2013; 24: 999-1006
- 24 Krajcigr M, Kutáč P, Elavsky S. et al. Comparison of bone mineral density of runners with inactive males: A cross-sectional 4HAIE study. PLoS One 2024; 19: e0306715
- 25 van den Bergh JP, Szulc P, Cheung AM. et al. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 2021; 32: 1465-1485
- 26 Krug R, Carballido-Gamio J, Burghardt AJ. et al. Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo. Osteoporos Int 2008; 19: 653-661
- 27 Pialat JB, Vilayphiou N, Boutroy S. et al. Local topological analysis at the distal radius by HR-pQCT: Application to in vivo bone microarchitecture and fracture assessment in the OFELY study. Bone 2012; 51: 362-368
- 28 Saint-Martin P, Dedouit F, Rérolle C. et al. Diagnostic value of high-resolution peripheral quantitative computed tomography (HR-pQCT) in the qualitative assessment of cribra orbitalia: a preliminary study. Homo 2015; 66: 38-43
- 29 Ulrich N. Das Museum Anatomicum am Fachbereich Medizin der Philipps-Universität Marburg. Frankfurt am Main: Peter Lang; 2017.
- 30 Aumüller G. Der Weg der Marburger anatomischen Sammlung zum Medizinhistorischen Museum. In: Sahmland I, Grundmann K, editors. Tote Objekte, lebendige Geschichten. Petersberg: Michael Imhof Verlag; 2014: 12-22
- 31 Brömer R, Franke E, Halbmayer E. et al. Colonial discourse in the history of Marburg university collections. ICOFOM Study Series. 2024. 52. 37-52
- 32 Grundmann K, Aumüller G, editors. Das Marburger Medizinhistorische Museum Anatomicum. Geschichte und Ausstellungsgegenstände. Marburg: Rathaus-Verlag; 2012
- 33 New Catalog of the medico-historical collection of Philipp’s University Marburg. Marburg: Unpublished;
- 34 Katalog der Präparate der osteologischen Sammlung, Marburg 1912, I. Präparate der Demonstrationssammlung zur Vorlesung über Osteologie und Syndesmologie des Menschen. Manuscript kept at the Medico-Historical Anatomical Collection of the University of Marburg, cit. in [29(p110)]
- 35 Keenan MJ, Hegsted M, Jones KL. et al. Comparison of bone density measurement techniques: DXA and Archimedes’ principle. J Bone Miner Res 1997; 12: 1903-1907
- 36 Mao SS, Li D, Luo Y. et al. Application of quantitative computed tomography for assessment of trabecular bone mineral density, microarchitecture and mechanical property. Clin Imaging 2016; 40: 330-338
- 37 Gabel L, Kent K, Hosseinitabatabaei S. et al. Recommendations for high-resolution peripheral quantitative computed tomography assessment of bone density, microarchitecture, and strength in pediatric populations. Curr Osteoporos Rep 2023; 21: 609-623
- 38 Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90: 6508-6515
 
     
      
    