RSS-Feed abonnieren
DOI: 10.1055/a-2716-4984
It Is Proposed That Cardiovascular Functions are Regulated by the Status of Ecto-phosphoproteins Orchestrated by Platelets
Autor*innen
Abstract
Platelets are at the nexus of virtually all physiological processes that occur within the cardiovascular system. The inordinate number and variety of platelet surface receptors allow these anucleate cells to interact with and respond to all the cell types in the blood, the vast vascular endothelial cell lining, the subendothelial matrix, foreign antigens/pathogens, and soluble plasma components from simple inorganic molecules, like Ca+2, to some of the most complex macromolecules, like von Willebrand factor. The surface receptors are but one component of the platelet's armory that regulates cardiovascular functions. Upon activation, platelets release 100s of different molecules from dense granules, α-granules, lysosomes, and from nongranule sources. The releasate contains a host of bioreactive molecules, including cytokines, chemokines, and growth factors required for normal and pathological cardiovascular functions. Also, among the released components are high concentrations of ATP along with soluble and extracellular membrane-bound protein kinases and likely protein phosphatases. The platelet is exquisitely poised to react to extracellular signals that alter intracellular pathways (“outside-in signaling”) resulting in the dramatic shape change from discoid to an enlarged amorphous cell that culminates in the direct interaction with other platelets, subendothelial matrixes, and other cell types. At the same time, the released platelet components are ideally suited to support the phosphorylation of protein players involved in a myriad of extracellular pathways within the microenvironment where platelets are activated. This paper presents scenarios where ecto-phospho-/dephosphorylated-proteins are known to or could regulate physiological processes in the cardiovascular system associated with atherogenesis and cardiovascular diseases.
Publikationsverlauf
Eingereicht: 15. Mai 2025
Angenommen: 03. Oktober 2025
Artikel online veröffentlicht:
23. Oktober 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Stefanini GG, Byrne RA, Windecker S, Kastrati A. State of the art: coronary artery stents - past, present and future. EuroIntervention 2017; 13 (06) 706-716
- 2 Statista.com/statistics/261576/cigarette-consumption-per-adult-in-the-us
- 3 Massberg S, Brand K, Grüner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196 (07) 887-896
- 4 Linden MD, Jackson DE. Platelets: pleiotropic roles in atherogenesis and atherothrombosis. Int J Biochem Cell Biol 2010; 42 (11) 1762-1766
- 5 Galabru J, Buffet-Janvresse C, Rivière Y, Hovanessian AG. Plasma protein kinase activity enhanced by interferon is found in platelets. FEBS Lett 1982; 149 (02) 176-180
- 6 Soslau G, Parker J. Modulation of platelet function by extracellular adenosine triphosphate. Blood 1989; 74 (03) 984-993
- 7 Soslau G, Youngprapakorn D. A possible dual physiological role of extracellular ATP in the modulation of platelet aggregation. Biochim Biophys Acta 1997; 1355 (02) 131-140
- 8 Martin SC. Phosphorylation of complement factor C3 in vivo. Biochem J 1989; 261 (03) 1051-1054
- 9 Yalak G, Vogel V. Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important. Sci Signal 2012; 5 (255) re7
- 10 Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The human platelet as an innate immune cell: interactions between activated platelets and the complement system. Front Immunol 2019; 10: 1590
- 11 Gödecke S, Roderigo C, Rose CR, Rauch BH, Gödecke A, Schrader J. Thrombin-induced ATP release from human umbilical vein endothelial cells. Am J Physiol Cell Physiol 2012; 302 (06) C915-C923
- 12 Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2 (02) 409-430
- 13 Ferrari D, la Sala A, Milani D, Celeghini C, Casciano F. Purinergic signaling in controlling macrophage and T cell functions during atherosclerosis development. Front Immunol 2021; 11: 617804
- 14 Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. The role of phospho-tyrosine signaling in platelet biology and hemostasis. Biochim Biophys Acta Mol Cell Res 2021; 1868 (03) 118927
- 15 Lucas RM, Luo L, Stow JL. ERK1/2 in immune signalling. Biochem Soc Trans 2022; 50 (05) 1341-1352
- 16 Cilek N, Ugurel E, Goksel E, Yalcin O. Signaling mechanisms in red blood cells: a view through the protein phosphorylation and deformability. J Cell Physiol 2024; 239 (03) e30958
- 17 Deng H, Rao X, Zhang S. et al. Protein kinase CK2: an emerging regulator of cellular metabolism. Biofactors 2024; 50 (04) 624-633
- 18 Korc-Grodzicki B, Tauber-Finkelstein M, Chain D, Shaltiel S. Vitronectin is phosphorylated by a cAMP-dependent protein kinase released by activation of human platelets with thrombin. Biochem Biophys Res Commun 1988; 157 (03) 1131-1138
- 19 Shaltiel S, Schvartz I, Korc-Grodzicki B, Kreizman T. Evidence for an extra-cellular function for protein kinase A. Mol Cell Biochem 1993; 127–128: 283-291
- 20 Morgenstern E, Gnad U, Preissner KT. et al. Localization of protein kinase A and vitronectin in resting platelets and their translocation onto fibrin fibers during clot formation. Eur J Cell Biol 2001; 80 (01) 87-98
- 21 Hatmi M, Gavaret JM, Elalamy I, Vargaftig BB, Jacquemin C. Evidence for cAMP-dependent platelet ectoprotein kinase activity that phosphorylates platelet glycoprotein IV (CD36). J Biol Chem 1996; 271 (40) 24776-24780
- 22 Guthmann F, Maehl P, Preiss J, Kolleck I, Rüstow B. Ectoprotein kinase-mediated phosphorylation of FAT/CD36 regulates palmitate uptake by human platelets. Cell Mol Life Sci 2002; 59 (11) 1999-2003
- 23 Seger D, Seger R, Shaltiel S. The CK2 phosphorylation of vitronectin. Promotion of cell adhesion via the alpha(v)beta 3-phosphatidylinositol 3-kinase pathway. J Biol Chem 2001; 276 (20) 16998-17006
- 24 Hillen TJ, Aroor AR, Shukla SD. Selective secretion of protein kinase C isozymes by thrombin-stimulated human platelets. Biochem Biophys Res Commun 2001; 280 (01) 259-264
- 25 Yalak G, Olsen BR. Proteomic database mining opens up avenues utilizing extracellular protein phosphorylation for novel therapeutic applications. J Transl Med 2015; 13: 125
- 26 Stavenuiter F, Gale AJ, Heeb MJ. Phosphorylation of protein S by platelet kinases enhances its activated protein C cofactor activity. FASEB J 2013; 27 (07) 2918-2925
- 27 Kalafatis M, Rand MD, Jenny RJ, Ehrlich YH, Mann KG. Phosphorylation of factor Va and factor VIIIa by activated platelets. Blood 1993; 81 (03) 704-719
- 28 Revollo L, Merrill-Skoloff G, De Ceunynck K. et al. The secreted tyrosine kinase VLK is essential for normal platelet activation and thrombus formation. Blood 2022; 139 (01) 104-117
- 29 Klement E, Medzihradszky KF. Extracellular Protein Phosphorylation, the Neglected Side of the Modification. Mol Cell Proteomics 2017; 16 (01) 1-7
- 30 Naik UP, Kornecki E, Ehrlich YH. Phosphorylation and dephosphorylation of human platelet surface proteins by an ecto-protein kinase/phosphatase system. Biochim Biophys Acta 1991; 1092 (02) 256-264
- 31 Kübler D, Reinhardt D, Reed J, Pyerin W, Kinzel V. Atrial natriuretic peptide is phosphorylated by intact cells through cAMP-dependent ecto-protein kinase. Eur J Biochem 1992; 206 (01) 179-186
- 32 Al-Nedawi KN, Pawłowska Z, Cierniewski CS. Interferon gamma bound to endothelial cells is phosphorylated by ecto-protein kinases. Acta Biochim Pol 1999; 46 (03) 693-702
- 33 Pirotton S, Boutherin-Falson O, Robaye B, Boeynaems JM. Ecto-phosphorylation on aortic endothelial cells. Exquisite sensitivity to staurosporine. Biochem J 1992; 285 (Pt 2): 585-591
- 34 Osawa M, Masuda M, Kusano K, Fujiwara K. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule?. J Cell Biol 2002; 158 (04) 773-785
- 35 Paas Y, Bohana-Kashtan O, Fishelson Z. Phosphorylation of the complement component, C9, by an ecto-protein kinase of human leukemic cells. Immunopharmacology 1999; 42 (1-3): 175-185
- 36 Scheibe RJ, Kuehl H, Krautwald S, Meissner JD, Mueller WH. Ecto-alkaline phosphatase activity identified at physiological pH range on intact P19 and HL-60 cells is induced by retinoic acid. J Cell Biochem 2000; 76 (03) 420-436
- 37 Redegeld FA, Smith P, Apasov S, Sitkovsky MV. Phosphorylation of T-lymphocyte plasma membrane-associated proteins by ectoprotein kinases: implications for a possible role for ectophosphorylation in T-cell effector functions. Biochim Biophys Acta 1997; 1328 (02) 151-165
- 38 Trachana V, Christophorides E, Kouzi-Koliakos K, Koliakos G. Laminin-1 is phosphorylated by ecto-protein kinases of monocytes. Int J Biochem Cell Biol 2005; 37 (02) 478-492
- 39 Babinska A, Ehrlich YH, Kornecki E. Activation of human platelets by protein kinase C antibody: role for surface phosphorylation in homeostasis. Am J Physiol 1996; 271 (5 Pt 2): H2134-H2144
- 40 Babinska A, Hogan MV, Sobocki T, Sobocka MB, Ehrlich YH, Kornecki E. Identification of ecto-PKC on surface of human platelets: role in maintenance of latent fibrinogen receptors. Am J Physiol Heart Circ Physiol 2000; 278 (06) H2008-H2019
- 41 Hatmi M, Haye B, Gavaret JM, Vargaftig BB, Jacquemin C. Alkaline phosphatase prevents platelet stimulation by thromboxane-mimetics. Br J Pharmacol 1991; 104 (02) 554-558
- 42 Montenarh M, Götz C. Ecto-protein kinase CK2, the neglected form of CK2. Biomed Rep 2018; 8 (04) 307-313
- 43 Nergiz-Unal R, Rademakers T, Cosemans JMEM, Heemskerk JWM. CD36 as a multiple-ligand signaling receptor in atherothrombosis. Cardiovasc Hematol Agents Med Chem 2011; 9 (01) 42-55
- 44 Bendas G, Schlesinger M. The Role of CD36/GPIV in Platelet Biology. Semin Thromb Hemost 2024; 50 (02) 224-235
- 45 Majumder R, Nguyen T. Protein S: function, regulation, and clinical perspectives. Curr Opin Hematol 2021; 28 (05) 339-344
- 46 Ekmekçi OB, Ekmekçi H. Vitronectin in atherosclerotic disease. Clin Chim Acta 2006; 368 (1–2): 77-83
- 47 Hallmann R, Hannocks MJ, Song J. et al. The role of basement membrane laminins in vascular function. Int J Biochem Cell Biol 2020; 127: 105823
- 48 Galliou PA, Verrou KM, Koliakos G. Phosphorylation mapping of laminin α1-chain: kinases in association with active sites. Comput Biol Chem 2019; 80: 480-497
- 49 Verrou KM, Galliou PA, Papaioannou M, Koliakos G. Phosphorylation mapping of laminin β1-chain: kinases in association with active sites. J Biosci 2019; 44 (02) 55
- 50 Galliou PA, Verrou KM, Papanikolaou NA, Koliakos G. Phosphorylation mapping of laminin γ1-chain: kinases, functional interaction sequences, and phosphorylationinterfering cancer mutations. J Biosci 2024; 49: 85
- 51 Halper J. Basic components of connective tissues and extracellular matrix: Fibronectin, fibrinogen, laminin, elastin, fibrillins, fibulins, matrilins, tenascins and thrombospondins. Adv Exp Med Biol 2021; 1348: 105-126
- 52 Hamill KJ, Kligys K, Hopkinson SB, Jones JCR. Laminin deposition in the extracellular matrix: a complex picture emerges. J Cell Sci 2009; 122 (Pt 24): 4409-4417
- 53 Yalak G, Ehrlich YH, Olsen BR. Ecto-protein kinases and phosphatases: an emerging field for translational medicine. J Transl Med 2014; 12: 165
- 54 Da Q, Han H, Valladolid C. et al. In vitro phosphorylation of von Willebrand factor by FAM20c enhances its ability to support platelet adhesion. J Thromb Haemost 2019; 17 (06) 866-877
- 55 Cho J, Mosher DF. Role of fibronectin assembly in platelet thrombus formation. J Thromb Haemost 2006; 4 (07) 1461-1469
- 56 Yalak G, Shiu J-Y, Schoen I, Mitsi M, Vogel V. Phosphorylated fibronectin enhances cell attachment and upregulates mechanical cell functions. PLoS One 2019; 14 (07) e0218893
- 57 Mitsi M, Forsten-Williams K, Gopalakrishnan M, Nugent MA. A catalytic role of heparin within the extracellular matrix. J Biol Chem 2008; 283 (50) 34796-34807
- 58 Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. Immunobiology, 5th ed,The Immune System in Health and Disease. New York: Garland Science; 2001. . ISBN-10: 0–8153–3642-X.
- 59 Bohana-Kashtan O, Pinna LA, Fishelson Z. Extracellular phosphorylation of C9 by protein kinase CK2 regulates complement-mediated lysis. Eur J Immunol 2005; 35 (06) 1939-1948
- 60 Noria S, Cowan DB, Gotlieb AI, Langille BL. Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ Res 1999; 85 (06) 504-514
- 61 Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol 2015; 209 (01) 13-22
- 62 Chen L, Qu H, Liu B. et al. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front Physiol 2024; 15: 1432719
- 63 Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 1998; 187 (03) 329-339
- 64 Zamora C, Cantó E, Vidal S. The dual role of platelets in the cardiovascular risk of chronic inflammation. Front Immunol 2021; 12: 625181
- 65 Fujimoto T, McEver RP. The cytoplasmic domain of P-selectin is phosphorylated on serine and threonine residues. Blood 1993; 82 (06) 1758-1766
- 66 Rolling CC, Barrett TJ, Berger JS. Platelet-monocyte aggregates: molecular mediators of thromboinflammation. Front Cardiovasc Med 2023; 10: 960398
- 67 Inwald DP, McDowall A, Peters MJ, Callard RE, Klein NJ. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 2003; 92 (09) 1041-1048
- 68 Poznyak AV, Nikiforov NG, Starodubova AV, Popkova TV, Orekhov AN. Macrophages and foam cells: brief overview of their role, linkage, and targeting potential in atherosclerosis. Biomedicines 2021; 9 (09) 1221
- 69 Yang J, Zhang L, Yu C, Yang X-F, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2014; 2 (01) 1
- 70 Evangelista V, Manarini S, Sideri R. et al. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood 1999; 93 (03) 876-885
- 71 Kim S-J, Jenne CN. Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. Semin Immunol 2016; 28 (06) 546-554
- 72 Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front Immunol 2018; 9: 2712
- 73 Jawień J, Lomnicka M, Korbut R, Chłopicki S. The involvement of adhesion molecules and lipid mediators in the adhesion of human platelets to eosinophils. J Physiol Pharmacol 2005; 56 (04) 637-648
- 74 Patzelt J, Verschoor A, Langer HF. Platelets and the complement cascade in atherosclerosis. Front Physiol 2015; 6: 49
- 75 Nording H, Langer HF. Complement links platelets to innate immunity. Semin Immunol 2018; 37: 43-52
- 76 Boyalla V, Gallego-Colon E, Spartalis M. Immunity and inflammation in cardiovascular disorders. BMC Cardiovasc Disord 2023; 23 (01) 148
- 77 Hamad OA, Nilsson PH, Wouters D, Lambris JD, Ekdahl KN, Nilsson B. Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. J Immunol 2010; 184 (05) 2686-2692
- 78 Ekdahl KN, Nilsson B. Alterations in C3 activation and binding caused by phosphorylation by a casein kinase released from activated human platelets. J Immunol 1999; 162 (12) 7426-7433
- 79 Maouia A, Rebetz J, Kapur R, Semple JW. The immune nature of platelets revisited. Transfus Med Rev 2020; 34 (04) 209-220
- 80 Jaén RI, Val-Blasco A, Prieto P. et al. Innate immune receptors, key actors in cardiovascular diseases. JACC Basic Transl Sci 2020; 5 (07) 735-749
- 81 Verschoor A, Neuenhahn M, Navarini AA. et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12 (12) 1194-1201
- 82 Li N. CD4+ T cells in atherosclerosis: regulation by platelets. Thromb Haemost 2013; 109 (06) 980-990
- 83 Zhou L, Zhang Z, Tian Y, Li Z, Liu Z, Zhu S. The critical role of platelet in cancer progression and metastasis. Eur J Med Res 2023; 28 (01) 385
- 84 Lebas H, Yahiaoui K, Martos R, Boulaftali Y. Platelets are at the nexus of vascular diseases. Front Cardiovasc Med 2019; 6: 132
- 85 El Brihi J, Pathak S. Normal and Abnormal Complete Blood Count with Differential. StatPearls [Internet] 2024
- 86 Nucci P, Brancato R, Mets MB, Shevell SK. Normal endothelial cell density range in childhood. Arch Ophthalmol 1990; 108 (02) 247-248
- 87 Wiwanitkit V. High serum alkaline phosphatase levels, a study in 181 Thai adult hospitalized patients. BMC Fam Pract 2001; 2: 2
- 88 Amanchy R, Kandasamy K, Mathivanan S. et al. Identification of novel phosphorylation motifs through an integrative computational and experimental analysis of the human phosphoproteome. J Proteomics Bioinform 2011; 4 (02) 22-35