Synlett 2008(20): 3247-3248  
DOI: 10.1055/s-0028-1083139
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Synthetic Uses of Chlorotitanium(IV) Triisopropoxide in C-C(N) Bond Formation

Allan Patrick G. Macabeo*
Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
e-Mail: allanpatrick_m@yahoo.com;
Further Information

Publication History

Publication Date:
24 November 2008 (online)

Introduction

Chlorotitanium(IV) isopropoxide, ClTi(Oi-Pr)3, is a Lewis acid utilized in various synthetic procedures for carbon-carbon (or nitrogen) bond constructions. Its preparation involves the mixing of three equivalents of tetraisoprop­oxytitanium and one equivalent of titanium(IV) chloride at 0 ˚C under a nitrogen atmosphere. Vacuum distillation of the crude product furnishes a syrupy liquid which turns into a solid at room temperature. It is soluble in n-pentane, toluene, THF and CH2Cl2; it is moisture-sensitive but can be kept under nitrogen for several months. [¹] The reagent is used as a starting material for the synthesis of versatile alkyl- and aryltriisopropoxytitanium compounds that are more chemo- and stereoselective as compared to Grignard reagents. [¹]

Scheme 1 Chemical preparation of ClTi(Oi-Pr)3

    References

  • 1 Reetz MT. Top. Curr. Chem.  1982,  106:  1 
  • 2a Reetz MT. Westermann J. Steinbach R. Wenderoth B. Peter R. Maus S. Chem. Ber.  1985,  118:  1421 
  • 2b Weidmann B. Seebach D. Angew. Chem. Int. Ed. Engl.  1983,  22:  31 
  • 3a Tang TP. Ellman JA. J. Org. Chem.  1999,  64:  12 
  • 3b Siegel C. Thornton ER. J. Am. Chem. Soc.  1989,  111:  5722 
  • 3c Tang TP. Ellman JA. J. Org. Chem.  2002,  67:  7819 
  • 4a O’ Neil GW. Phillips AJ. Tetrahedron Lett.  2004,  45:  4253 
  • 4b Keaton KA. Phillips AJ. J. Am. Chem. Soc.  2006,  128:  408 
  • 5a Schultz-Fademrecht C. Wibbeling B. Fröhlich R. Hoppe D. Org. Lett.  2001,  3:  1221 
  • 5b Chedid RB. Brümmer M. Wibbeling B. Fröhlich R. Hoppe D. Angew. Chem.  2007,  46:  3131 
  • 6a Kulinkovich OG. Sviridov SV. Vasilevskii DA. Synthesis  1991,  234 
  • 6b Kulinkovich OG. de Meijere A. Chem. Rev.  2000,  100:  2789 
  • 7a Lee JC. Sung MJ. Cha JK. Tetrahedron Lett.  2001,  42:  2059 
  • 7b de Meijere A. Williams CM. Kourdioukov A. Sviridov SV. Chaplinski V. Kordes M. Savchenko AI. Stratmann C. Noltemeyer M. Chem. Eur. J.  2006,  3789 
  • 7c Faler CA. Joullié MM. Org. Lett.  2007,  9:  1987 
  • 8a Okamoto S. Subburaj K. Sato F. J. Am. Chem. Soc.  2000,  122:  11244 
  • 8b Sung MJ. Pang J.-H. Park S.-B. Cha JK. Org. Lett.  2003,  5:  2137 
  • 8c Baktharaman S. Selvakumar S. Singh VK. Org. Lett.  2006,  8:  4335 
  • 9 Sawada Y. Oku A. J. Org. Chem.  2004,  69:  2899 
  • 10a Cao B. Xiao D. Joullié MM. Org. Lett.  1999,  1:  1799 
  • 10b Kim S.-H. Kim S.-I. Lai S. Cha JH. J. Org. Chem.  1999,  64:  6771 
  • 10c Kim S.-H. Park S. Choo H. Cha JH. Tetrahedron Lett.  2002,  43:  6657 
  • 11 Hemmerling M. Sjöholm A. Somfai P. Tetrahedron: Asymmetry  1999,  10:  4091 
  • 12a Gais H.-J. Hainz R. Müller H. Bruns PR. Giesen N. Raabe G. Runsick J. Nienstedt S. Decker J. Schleusner M. Hachtel J. Loo R. Woo C.-W. Eur. J. Org. Chem.  2000,  3973 
  • 12b Tiwari SK. Gais H.-G. Lindenmaier A. Babu GS. Raabe G. Reddy LR. Köhler F. Günter M. Koep S. Iska VBR. J. Am. Chem. Soc.  2006,  128:  7360 
  • 12c Köhler F. Gais H.-J. Raabe G. Org. Lett.  2007,  9:  1231 
  • 12d Adrien A. Gais H.-G. Köhler F. Runsink J. Raabe G. Org. Lett.  2007,  9:  2155