Abstract
The mechanisms by which tissue injury after acute myocardial infarction occurs have
not been fully elucidated, but considerable evidence suggests that activation of complement
plays an important role in the pathophysiology. Reperfusion of the ischemic myocardium
is strictly necessary to rescue the exposed tissue from eventual death. However, reversion
of the blood supply is also associated with reperfusion injury contributing to tissue
injury. Activation of the complement system has indisputable beneficial effects in
the immune defense and in the clearance of damaged tissue and apoptotic cells, but
excessive activation of the system may lead to uncontrolled tissue damage. This review
focuses on the role of complement activation, with focus on the lectin pathway, endothelial
dysfunction and cardiovascular diseases, including ischemic heart disease and diabetic
angiopathy. Finally, potential therapeutic strategies targeting the complement system
are discussed.
Key words
complement - inflammation - cardiovascular disease - ischemia - diabetes mellitus
References
1
Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V,
Kissela B, Kittner S, Lloyd-Jones D, MacDermott M, Meigs J, Moy C, Nichol G, O’Donnell CJ,
Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wasserthiel-Smoller S, Hong Y.
Heart disease and stroke statistics – 2007 update: a report from the American Heart
Association Statistics Committee and Stroke Statistics Subcommittee.
Circulation.
2007;
115
e69-e171
2
Cooper NR.
The classical complement pathway: activation and regulation of the first complement
component.
Adv Immunol.
1985;
37
151-216
3
Muller-Eberhard HJ.
Molecular organization and function of the complement system.
Annu Rev Biochem.
1988;
57
321-347
4
Matsushita M, Endo Y, Hamasaki N, Fujita T.
Activation of the lectin complement pathway by ficolins.
Int Immunopharmacol.
2001;
1
359-363
5
Frederiksen PD, Thiel S, Larsen CB, Jensenius JC.
M-ficolin, an innate immune defence molecule, binds patterns of acetyl groups and
activates complement.
Scand J Immunol.
2005;
62
462-473
6
Holmskov U, Thiel S, Jensenius JC.
Collectins and ficolins: humoral lectins of the innate immune defense.
Annu Rev Immunol.
2003;
21
547-578
7
Ikeda K, Sannoh T, Kawasaki N, Kawasaki T, Yamashina I.
Serum lectin with known structure activates complement through the classical pathway.
J Biol Chem.
1987;
262
7451-7454
8
Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, Willis AC,
Eggleton P, Hansen S, Holmskov U, Reid KB, Jensenius JC.
A second serine protease associated with mannan-binding lectin that activates complement.
Nature.
1997;
386
506-510
9
Holmskov U, Malhotra R, Sim RB, Jensenius JC.
Collectins: collagenous C-type lectins of the innate immune defense system.
Immunol Today.
1994;
15
67-74
10
Steffensen R, Thiel S, Varming K, Jersild C, Jensenius JC.
Detection of structural gene mutations and promoter polymorphisms in the mannan-binding
lectin (MBL) gene by polymerase chain reaction with sequence-specific primers.
J Immunol Methods.
2000;
241
33-42
11
Super M, Thiel S, Lu J, Levinsky RJ, Turner MW.
Association of low levels of mannan-binding protein with a common defect of opsonisation.
Lancet.
1989;
2
1236-1239
12
Johnson E, Hetland G.
Human umbilical vein endothelial cells synthesize functional C3, C5, C6, C8 and C9
in vitro.
Scand J Immunol.
1991;
33
667-671
13
Langeggen H, Pausa M, Johnson E, Casarsa C, Tedesco F.
The endothelium is an extrahepatic site of synthesis of the seventh component of the
complement system.
Clin Exp Immunol.
2000;
121
69-76
14
Langeggen H, Berge KE, Macor P, Fischetti F, Tedesco F, Hetland G, Berg K, Johnson E.
Detection of mRNA for the terminal complement components C5, C6, C8 and C9 in human
umbilical vein endothelial cells in vitro.
Apmis.
2001;
109
73-78
15
Niculescu F, Rus H.
Mechanisms of signal transduction activated by sublytic assembly of terminal complement
complexes on nucleated cells.
Immunol Res.
2001;
24
191-199
16
Tedesco F, Fischetti F, Pausa M, Dobrina A, Sim RB, Daha MR.
Complement-endothelial cell interactions: pathophysiological implications.
Mol Immunol.
1999;
36
261-268
17
Ghebrehiwet B, Peerschke EI.
cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding
cellular proteins involved in inflammation and infection.
Mol Immunol.
2004;
41
173-183
18
Oroszlan M, Daha MR, Cervenak L, Prohaszka Z, Fust G, Roos A.
MBL and C1q compete for interaction with human endothelial cells.
Mol Immunol.
2007;
44
1150-1158
19
Schmaier AH, Murray SC, Heda GD, Farber A, Kuo A, MacCrae K, Cines DB.
Synthesis and expression of C1 inhibitor by human umbilical vein endothelial cells.
J Biol Chem.
1989;
264
18173-18179
20
Gulati P, Guc D, Lemercier C, Lappin D, Whaley K.
Expression of the components and regulatory proteins of the classical pathway of complement
in normal and diseased synovium.
Rheumatol Int.
1994;
14
13-19
21
Schlaf G, Demberg T, Beisel N, Schieferdecker HL, Gotze O.
Expression and regulation of complement factors H and I in rat and human cells: some
critical notes.
Mol Immunol.
2001;
38
231-239
22
Berge V, Berge KE, Johnson E.
Vitronectin modulates the expression of complement components of the terminal pathway
synthesized by human umbilical vein endothelial cells in vitro.
Apmis.
1996;
104
523-530
23
Berge V, Johnson E, Hogasen K.
Clusterin and the terminal complement pathway synthesized by human umbilical vein
endothelial cells are closely linked when detected on co-cultured agarose beads.
APMIS.
1997;
105
17-24
24
Hoppe HC, Wet BJ de, Cywes C, Daffe M, Ehlers MR.
Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating
both direct and opsonic binding to nonphagocytic mammalian cells.
Infect Immun.
1997;
65
3896-3905
25
Drexler H.
Endothelial dysfunction: clinical implications.
Prog Cardiovasc Dis.
1997;
39
287-324
26
Endemann DH, Schiffrin EL.
Endothelial dysfunction.
J Am Soc Nephrol.
2004;
15
1983-1992
27
Esper RJ, Nordaby RA, Vilarino JO, Paragano A, Cacharron JL, Machado RA.
Endothelial dysfunction: a comprehensive appraisal.
Cardiovasc Diabetol.
2006;
5
4
28
Kyrou I, Tsigos C.
Stress mechanisms and metabolic complications.
Horm Metab Res.
2007;
39
430-438
29
Bellin C, Wiza DH de, Wiernsperger NF, Rosen P.
Generation of reactive oxygen species by endothelial and smooth muscle cells: influence
of hyperglycemia and metformin.
Horm Metab Res.
2006;
38
732-739
30
Neunteufl T, Heher S, Katzenschlager R, Wolfl G, Kostner K, Maurer G, Weidinger F.
Late prognostic value of flow-mediated dilation in the brachial artery of patients
with chest pain.
Am J Cardiol.
2000;
86
207-210
31
Kostner KM, Fahti RB, Case C, Hobson P, Tate J, Marwick TH.
Inflammation, complement activation and endothelial function in stable and unstable
coronary artery disease.
Clin Chim Acta.
2006;
365
129-134
32
Czermak BJ, Sarma V, Bless NM, Schmal H, Friedl HP, Ward PA.
In vitro and in vivo dependency of chemokine generation on C5a and TNF-alpha.
J Immunol.
1999;
162
2321-2325
33
Collard CD, Montalto MC, Reenstra WR, Buras JA, Stahl GL.
Endothelial oxidative stress activates the lectin complement pathway: role of cytokeratin
1.
Am J Pathol.
2001;
159
1045-1054
34
Collard CD, Vakeva A, Morrissey MA, Agah A, Rollins SA, Reenstra WR, Buras JA, Meri S,
Stahl GL.
Complement activation after oxidative stress: role of the lectin complement pathway.
Am J Pathol.
2000;
156
1549-1556
35
Mold C, Morris CA.
Complement activation by apoptotic endothelial cells following hypoxia/reoxygenation.
Immunology.
2001;
102
359-364
36
Stahl GL, Reenstra WR, Frendl G.
Complement-mediated loss of endothelium-dependent relaxation of porcine coronary arteries.
Role of the terminal membrane attack complex.
Circ Res.
1995;
76
575-583
37
Lennon PF, Collard CD, Morrissey MA, Stahl GL.
Complement-induced endothelial dysfunction in rabbits: mechanisms, recovery, and gender
differences.
Am J Physiol.
1996;
270
H1924-H1932
38
Riedemann NC, Ward PA.
Complement in ischemia reperfusion injury.
Am J Pathol.
2003;
162
363-367
39
Arumugam TV, Shiels IA, Woodruff TM, Granger DN, Taylor SM.
The role of the complement system in ischemia-reperfusion injury.
Shock.
2004;
21
401-409
40
Khalil AA, Aziz FA, Hall JC.
Reperfusion injury.
Plast Reconstr Surg.
2006;
117
1024-1033
41
Yasuda M, Takeuchi K, Hiruma M, Iida H, Tahara A, Itagane H, Toda I, Akioka K, Teragaki M,
Oku H. et al .
The complement system in ischemic heart disease.
Circulation.
1990;
81
156-163
42
Lagrand WK, Niessen HW, Wolbink GJ, Jaspars LH, Visser CA, Verheugt FW, Meijer CJ,
Hack CE.
C-reactive protein colocalizes with complement in human hearts during acute myocardial
infarction.
Circulation.
1997;
95
97-103
43
Iltumur K, Karabulut A, Toprak G, Toprak N.
Complement activation in acute coronary syndromes.
APMIS.
2005;
113
167-174
44
Muscari A, Massarelli G, Bastagli L, Poggiopollini G, Tomassetti V, Drago G, Martignani C,
Pacilli P, Boni P, Puddu P.
Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events
in middle-aged men.
Eur Heart J.
2000;
21
1081-1090
45
Szeplaki G, Prohaszka Z, Duba J, Rugonfalvi-Kiss S, Karadi I, Kokai M, Kramer J, Fust G,
Kleiber M, Romics L, Varga L.
Association of high serum concentration of the third component of complement (C3)
with pre-existing severe coronary artery disease and new vascular events in women.
Atherosclerosis.
2004;
177
383-389
46
Palikhe A, Sinisalo J, Seppanen M, Haario H, Meri S, Valtonen V, Nieminen MS, Lokki ML.
Serum complement C3/C4 ratio, a novel marker for recurrent cardiovascular events.
Am J Cardiol.
2007;
99
890-895
47
Engstrom G, Hedblad B, Janzon L, Lindgarde F.
Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke:
a population-based cohort study.
Eur J Cardiovasc Prev Rehabil.
2007;
14
392-397
48
Best LG, Davidson M, North KE, MacCluer JW, Zhang Y, Lee ET, Howard BV, DeCroo S,
Ferrell RE.
Prospective analysis of mannose-binding lectin genotypes and coronary artery disease
in American Indians: the Strong Heart Study.
Circulation.
2004;
109
471-475
49
Saevarsdottir S, Oskarsson OO, Aspelund T, Eiriksdottir G, Vikingsdottir T, Gudnason V,
Valdimarsson H.
Mannan binding lectin as an adjunct to risk assessment for myocardial infarction in
individuals with enhanced risk.
J Exp Med.
2005;
201
117-125
50
Norwood MG, Sayers RD, Roscher S, Lynch NJ, Sutton AJ, Schwaeble WJ.
Consumption of mannan-binding lectin during abdominal aortic aneurysm repair.
Eur J Vasc Endovasc Surg.
2006;
31
239-243
51
Ueland T, Espevik T, Kjekshus J, Gullestad L, Omland T, Squire IB, Froland SS, Mollnes TE,
Dickstein K, Aukrust P.
Mannose binding lectin and soluble Toll-like receptor 2 in heart failure following
acute myocardial infarction.
J Card Fail.
2006;
12
659-663
52
Biezeveld MH, Geissler J, Weverling GJ, Kuipers IM, Lam J, Ottenkamp J, Kuijpers TW.
Polymorphisms in the mannose-binding lectin gene as determinants of age-defined risk
of coronary artery lesions in Kawasaki disease.
Arthritis Rheum.
2006;
54
369-376
53
Schafranski MD, Stier A, Nisihara R, Messias-Reason IJ.
Significantly increased levels of mannose-binding lectin (MBL) in rheumatic heart
disease: a beneficial role for MBL deficiency.
Clin Exp Immunol.
2004;
138
521-525
54
Hill JH, Ward PA.
The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats.
J Exp Med.
1971;
133
885-900
55
Pinckard RN, O’Rourke RA, Crawford MH, Grover FS, MacManus LM, Ghidoni JJ, Storrs SB,
Olson MS.
Complement localization and mediation of ischemic injury in baboon myocardium.
J Clin Invest.
1980;
66
1050-1056
56
MacManus LM, Kolb WP, Crawford MH, O’Rourke RA, Grover FL, Pinckard RN.
Complement localization in ischemic baboon myocardium.
Lab Invest.
1983;
48
436-447
57
Yasojima K, Kilgore KS, Washington RA, Lucchesi BR, MacGeer PL.
Complement gene expression by rabbit heart: upregulation by ischemia and reperfusion.
Circ Res.
1998;
82
1224-1230
58
Ito W, Schafer HJ, Bhakdi S, Klask R, Hansen S, Schaarschmidt S, Schofer J, Hugo F,
Hamdoch T, Mathey D.
Influence of the terminal complement-complex on reperfusion injury, no-reflow and
arrhythmias: a comparison between C6-competent and C6-deficient rabbits.
Cardiovasc Res.
1996;
32
294-305
59
Vakeva A, Morgan BP, Tikkanen I, Helin K, Laurila P, Meri S.
Time course of complement activation and inhibitor expression after ischemic injury
of rat myocardium.
Am J Pathol.
1994;
144
1357-1368
60
Vries B de, Walter SJ, Peutz-Kootstra CJ, Wolfs TG, Heurn LW van, Buurman WA.
The mannose-binding lectin-pathway is involved in complement activation in the course
of renal ischemia-reperfusion injury.
Am J Pathol.
2004;
165
1677-1688
61
Walsh MC, Bourcier T, Takahashi K, Shi L, Busche MN, Rother RP, Solomon SD, Ezekowitz RA,
Stahl GL.
Mannose-binding lectin is a regulator of inflammation that accompanies myocardial
ischemia and reperfusion injury.
J Immunol.
2005;
175
541-546
62
Moller-Kristensen M, Wang W, Ruseva M, Thiel S, Nielsen S, Takahashi K, Shi L, Ezekowitz A,
Jensenius JC, Gadjeva M.
Mannan-binding lectin recognizes structures on ischaemic reperfused mouse kidneys
and is implicated in tissue injury.
Scand J Immunol.
2005;
61
426-434
63
Crawford MH, Grover FL, Kolb WP, MacMahan CA, O’Rourke RA, MacManus LM, Pinckard RN.
Complement and neutrophil activation in the pathogenesis of ischemic myocardial injury.
Circulation.
1988;
78
1449-1458
64
Griselli M, Herbert J, Hutchinson WL, Taylor KM, Sohail M, Krausz T, Pepys MB.
C-reactive protein and complement are important mediators of tissue damage in acute
myocardial infarction.
J Exp Med.
1999;
190
1733-1740
65
Pepys MB, Hirschfield GM, Tennent GA, Gallimore JR, Kahan MC, Bellotti V, Hawkins PN,
Myers RM, Smith MD, Polara A, Cobb AJ, Ley SV, Aquilina JA, Robinson CV, Sharif I,
Gray GA, Sabin CA, Jenvey MC, Kolstoe SE, Thompson D, Wood SP.
Targeting C-reactive protein for the treatment of cardiovascular disease.
Nature.
2006;
440
1217-1221
66
Niculescu F, Niculescu T, Rus H.
C5b-9 terminal complement complex assembly on apoptotic cells in human arterial wall
with atherosclerosis.
Exp Mol Pathol.
2004;
76
17-23
67
Rugonfalvi-Kiss S, Dosa E, Madsen HO, Endresz V, Prohaszka Z, Laki J, Karadi I, Gonczol E,
Selmeci L, Romics L, Fust G, Entz L, Garred P.
High rate of early restenosis after carotid eversion endarterectomy in homozygous
carriers of the normal mannose-binding lectin genotype.
Stroke.
2005;
36
944-948
68
Szeplaki G, Varga L, Laki J, Dosa E, Madsen HO, Prohaszka Z, Szabo A, Acsady G, Selmeci L,
Garred P, Fust G, Entz L.
Elevated complement C3 is associated with early restenosis after eversion carotid
endarterectomy.
Thromb Haemost.
2006;
96
529-534
69
Fiane AE, Videm V, Lingaas PS, Heggelund L, Nielsen EW, Geiran OR, Fung M, Mollnes TE.
Mechanism of complement activation and its role in the inflammatory response after
thoracoabdominal aortic aneurysm repair.
Circulation.
2003;
108
849-856
70
Marshall SM, Flyvbjerg A.
Prevention and early detection of vascular complications of diabetes.
BMJ.
2006;
333
475-480
71
Ryden L, Standl E, Bartnik M, Berghe G Van den, Betteridge J, Boer MJ de, Cosentino F,
Jonsson B, Laakso M, Malmberg K, Priori S, Ostergren J, Tuomilehto J, Thrainsdottir I,
Vanhorebeek I, Stramba-Badiale M, Lindgren P, Qiao Q, Priori SG, Blanc JJ, Budaj A,
Camm J, Dean V, Deckers J, Dickstein K, Lekakis J, MacGregor K, Metra M, Morais J,
Osterspey A, Tamargo J, Zamorano JL, Deckers JW, Bertrand M, Charbonnel B, Erdmann E,
Ferrannini E, Flyvbjerg A, Gohlke H, Juanatey JR, Graham I, Monteiro PF, Parhofer K,
Pyorala K, Raz I, Schernthaner G, Volpe M, Wood D.
Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary.
The Task Force on Diabetes and Cardiovascular Diseases of the European Society of
Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD).
Eur Heart J.
2007;
28
88-136
72
Hansen HH, Joensen AM, Riahi S, Malczynski J, Molenberg D, Ravkilde J.
Short and long-term outcome in diabetic patients with acute myocardial infarction
in the invasive era.
Scand Cardiovasc J.
2007;
41
19-24
73
Hansen TK, Tarnow L, Thiel S, Steffensen R, Stehouwer CD, Schalkwijk CG, Parving HH,
Flyvbjerg A.
Association between mannose-binding lectin and vascular complications in type 1 diabetes.
Diabetes.
2004;
53
1570-1576
74
Hansen TK, Gall MA, Tarnow L, Thiel S, Stehouwer CD, Schalkwijk CG, Parving HH, Flyvbjerg A.
Mannose-binding lectin and mortality in type 2 diabetes.
Arch Intern Med.
2006;
166
2007-2013
75
Qin X, Goldfine A, Krumrei N, Grubissich L, Acosta J, Chorev M, Hays AP, Halperin JA.
Glycation inactivation of the complement regulatory protein CD59: a possible role
in the pathogenesis of the vascular complications of human diabetes.
Diabetes.
2004;
53
2653-2661
76
Hansen TK.
Mannose-binding lectin (MBL) and vascular complications in diabetes.
Horm Metab Res.
2005;
37
((Suppl 1))
95-98
77
Hansen TK, Thiel S, Knudsen ST, Gravholt CH, Christiansen JS, Mogensen CE, Poulsen PL.
Elevated levels of mannan-binding lectin in patients with type 1 diabetes.
J Clin Endocrinol Metab.
2003;
88
4857-4861
78
Saraheimo M, Forsblom C, Hansen TK, Teppo AM, Fagerudd J, Pettersson-Fernholm K, Thiel S,
Tarnow L, Ebeling P, Flyvbjerg A, Groop PH.
Increased levels of mannan-binding lectin in type 1 diabetic patients with incipient
and overt nephropathy.
Diabetologia.
2005;
48
198-202
79 Hansen TK, Tarnow L, AS A, Thiel S, Parving HH, Flyvbjerg A.
Mannose-binding lectin genotype and serum concentrations predict mortality in type
1 diabetes. In 66th Scientific session of the American Diabetes Organisation . Washington, USA 2006
80
Hovind P, Hansen TK, Tarnow L, Thiel S, Steffensen R, Flyvbjerg A, Parving HH.
Mannose-binding lectin as a predictor of microalbuminuria in type 1 diabetes: an inception
cohort study.
Diabetes.
2005;
54
1523-1527
81
Ostergaard J, Thiel S, Gadjeva M, Hansen TK, Rasch R, Flyvbjerg A.
Mannose-binding lectin deficiency attenuates renal changes in a streptozotocin-induced
model of type 1 diabetes in mice.
Diabetologia.
2007;
50
1541-1549
82
Cannon 3rd RO.
Mechanisms, management and future directions for reperfusion injury after acute myocardial
infarction.
Nat Clin Pract Cardiovasc Med.
2005;
2
88-94
83
Vakeva AP, Agah A, Rollins SA, Matis LA, Li L, Stahl GL.
Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role
of the terminal complement components and inhibition by anti-C5 therapy.
Circulation.
1998;
97
2259-2267
84
Amsterdam EA, Stahl GL, Pan HL, Rendig SV, Fletcher MP, Longhurst JC.
Limitation of reperfusion injury by a monoclonal antibody to C5a during myocardial
infarction in pigs.
Am J Physiol.
1995;
268
H448-H457
85
Mahaffey KW, Granger CB, Nicolau JC, Ruzyllo W, Weaver WD, Theroux P, Hochman JS,
Filloon TG, Mojcik CF, Todaro TG, Armstrong PW.
Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis
in acute myocardial infarction: the COMPlement inhibition in myocardial infarction
treated with thromboLYtics (COMPLY) trial.
Circulation.
2003;
108
1176-1183
86
Granger CB, Mahaffey KW, Weaver WD, Theroux P, Hochman JS, Filloon TG, Rollins S,
Todaro TG, Nicolau JC, Ruzyllo W, Armstrong PW.
Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous
coronary intervention in acute myocardial infarction: the COMplement inhibition in
Myocardial infarction treated with Angioplasty (COMMA) trial.
Circulation.
2003;
108
1184-1190
87
Theroux P, Armstrong PW, Mahaffey KW, Hochman JS, Malloy KJ, Rollins S, Nicolau JC,
Lavoie J, Luong TM, Burchenal J, Granger CB.
Prognostic significance of blood markers of inflammation in patients with ST-segment
elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab,
a C5 inhibitor: a substudy of the COMMA trial.
Eur Heart J.
2005;
26
1964-1970
88
Shernan SK, Fitch JC, Nussmeier NA, Chen JC, Rollins SA, Mojcik CF, Malloy KJ, Todaro TG,
Filloon T, Boyce SW, Gangahar DM, Goldberg M, Saidman LJ, Mangano DT.
Impact of pexelizumab, an anti-C5 complement antibody, on total mortality and adverse
cardiovascular outcomes in cardiac surgical patients undergoing cardiopulmonary bypass.
Ann Thorac Surg.
2004;
77
942-949
, discussion 949–950
89
Mathew JP, Shernan SK, White WD, Fitch JC, Chen JC, Bell L, Newman MF.
Preliminary report of the effects of complement suppression with pexelizumab on neurocognitive
decline after coronary artery bypass graft surgery.
Stroke.
2004;
35
2335-2339
90
Verrier ED, Shernan SK, Taylor KM, Werf F Van de, Newman MF, Chen JC, Carrier M, Haverich A,
Malloy KJ, Adams PX, Todaro TG, Mojcik CF, Rollins SA, Levy JH.
Terminal complement blockade with pexelizumab during coronary artery bypass graft
surgery requiring cardiopulmonary bypass: a randomized trial.
Jama.
2004;
291
2319-2327
91
Haverich A, Shernan SK, Levy JH, Chen JC, Carrier M, Taylor KM, Werf F Van de, Newman MF,
Adams PX, Todaro TG, Laan M van der, Verrier ED.
Pexelizumab reduces death and myocardial infarction in higher risk cardiac surgical
patients.
Ann Thorac Surg.
2006;
82
486-492
92
Carrier M, Menasche P, Levy JH, Newman MF, Taylor KM, Haverich A, Chen JC, Shernan SK,
Werf F Van de, Laan M van der, Todaro TG, Adams PX, Verrier ED.
Inhibition of complement activation by pexelizumab reduces death in patients undergoing
combined aortic valve replacement and coronary artery bypass surgery.
J Thorac Cardiovasc Surg.
2006;
131
352-356
93
Armstrong PW, Adams PX, Al-Khalidi HR, Hamm C, Holmes D, O'Neill W, Todaro TG, Vahanian A,
Werf F Van de, Granger CB.
Assessment of Pexelizumab in Acute Myocardial Infarction (APEX AMI): a multicenter,
randomized, double-blind, parallel-group, placebo-controlled study of pexelizumab
in patients with acute myocardial infarction undergoing primary percutaneous coronary
intervention.
Am Heart J.
2005;
149
402-407
94
Armstrong PW, Granger CB, Adams PX, Hamm C, Holmes
Jr
D, O'Neill WW, Todaro TG, Vahanian A, Werf F Van de.
Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary
percutaneous coronary intervention: a randomized controlled trial.
JAMA.
2007;
297
43-51
95
Zhang H, Qin G, Liang G, Li J, Barrington RA, Liu DX.
C5aR-mediated myocardial ischemia/reperfusion injury.
Biochem Biophys Res Commun.
2007;
357
446-452
96
Cicardi M, Zingale L, Zanichelli A, Pappalardo E, Cicardi B.
C1 inhibitor: molecular and clinical aspects.
Springer Semin Immunopathol.
2005;
27
286-298
97
Asghar SS, Pasch MC.
Therapeutic inhibition of the complement system. Y2K update.
Front Biosci.
2000;
5
E63-E81
98
Kirschfink M, Mollnes TE.
C1-inhibitor: an anti-inflammatory reagent with therapeutic potential.
Expert Opin Pharmacother.
2001;
2
1073-1083
99
Inderbitzin D, Beldi G, Avital I, Vinci G, Candinas D.
Local and remote ischemia-reperfusion injury is mitigated in mice overexpressing human
C1 inhibitor.
Eur Surg Res.
2004;
36
142-147
100
Simoni MG De, Rossi E, Storini C, Pizzimenti S, Echart C, Bergamaschini L.
The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion
injury does not require C1q.
Am J Pathol.
2004;
164
1857-1863
101
Bauernschmitt R, Bohrer H, Hagl S.
Rescue therapy with C1-esterase inhibitor concentrate after emergency coronary surgery
for failed PTCA.
Intensive Care Med.
1998;
24
635-638
102
Tassani P, Kunkel R, Richter JA, Oechsler H, Lorenz HP, Braun SL, Eising GP, Haas F,
Paek SU, Bauernschmitt R, Jochum M, Lange R.
Effect of C1-esterase-inhibitor on capillary leak and inflammatory response syndrome
during arterial switch operations in neonates.
J Cardiothorac Vasc Anesth.
2001;
15
469-473
103
Zwaan C de, Kleine AH, Diris JH, Glatz JF, Wellens HJ, Strengers PF, Tissing M, Hack CE,
Dieijen-Visser MP van, Hermens WT.
Continuous 48-h C1-inhibitor treatment, following reperfusion therapy, in patients
with acute myocardial infarction.
Eur Heart J.
2002;
23
1670-1677
104
Fattouch K, Bianco G, Speziale G, Sampognaro R, Lavalle C, Guccione F, Dioguardi P,
Ruvolo G.
Beneficial effects of C1 esterase inhibitor in ST-elevation myocardial infarction
in patients who underwent surgical reperfusion: a randomised double-blind study.
Eur J Cardiothorac Surg.
2007;
32
326-332
105
Weisman HF, Bartow T, Leppo MK, Marsh
Jr
HC, Carson GR, Concino MF, Boyle MP, Roux KH, Weisfeldt ML, Fearon DT.
Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing
post-ischemic myocardial inflammation and necrosis.
Science.
1990;
249
146-151
106
Chavez-Cartaya RE, DeSola GP, Wright L, Jamieson NV, White DJ.
Regulation of the complement cascade by soluble complement receptor type 1. Protective
effect in experimental liver ischemia and reperfusion.
Transplantation.
1995;
59
1047-1052
107
Weiser MR, Williams JP, Moore
Jr
FD, Kobzik L, Ma M, Hechtman HB, Carroll MC.
Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and
complement.
J Exp Med.
1996;
183
2343-2348
108
Gillinov AM, DeValeria PA, Winkelstein JA, Wilson I, Curtis WE, Shaw D, Yeh CG, Rudolph AR,
Baumgartner WA, Herskowitz A. et al .
Complement inhibition with soluble complement receptor type 1 in cardiopulmonary bypass.
Ann Thorac Surg.
1993;
55
619-624
109
Lazar HL, Bao Y, Gaudiani J, Rivers S, Marsh H.
Total complement inhibition: an effective strategy to limit ischemic injury during
coronary revascularization on cardiopulmonary bypass.
Circulation.
1999;
100
1438-1442
110
Austen
Jr
WG, Kyriakides C, Favuzza J, Wang Y, Kobzik L, Moore
Jr
FD, Hechtman HB.
Intestinal ischemia-reperfusion injury is mediated by the membrane attack complex.
Surgery.
1999;
126
343-348
111
Lazar HL, Bokesch PM, Lenta F van, Fitzgerald C, Emmett C, Marsh
Jr
HC, Ryan U.
Soluble human complement receptor 1 limits ischemic damage in cardiac surgery patients
at high risk requiring cardiopulmonary bypass.
Circulation.
2004;
110
II274-II279
112
Lazar HL, Keilani T, Fitzgerald CA, Shapira OM, Hunter CT, Shemin RJ, Marsh
Jr
HC, Ryan US.
Beneficial effects of complement inhibition with soluble complement receptor 1 (TP10)
during cardiac surgery: is there a gender difference?.
Circulation.
2007;
116
I83-I88
113
Li JS, Sanders SP, Perry AE, Stinnett SS, Jaggers J, Bokesch P, Reynolds L, Nassar R,
Anderson PA.
Pharmacokinetics and safety of TP10, soluble complement receptor 1, in infants undergoing
cardiopulmonary bypass.
Am Heart J.
2004;
147
173-180
114
Zacharowski K, Otto M, Hafner G, Marsh
Jr
HC, Thiemermann C.
Reduction of myocardial infarct size with sCR1sLe(x), an alternatively glycosylated
form of human soluble complement receptor type 1 (sCR1), possessing sialyl Lewis x.
Br J Pharmacol.
1999;
128
945-952
115
Huang J, Kim LJ, Mealey R, Marsh
Jr
HC, Zhang Y, Tenner AJ, Connolly
Jr
ES, Pinsky DJ.
Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein.
Science.
1999;
285
595-599
116
Souza DG, Esser D, Bradford R, Vieira AT, Teixeira MM.
APT070 (Mirococept), a membrane-localised complement inhibitor, inhibits inflammatory
responses that follow intestinal ischaemia and reperfusion injury.
Br J Pharmacol.
2005;
145
1027-1034
Correspondence
M. BjerrePhD
The Medical Research Laboratories
Clinical Institute and Immunoendocrine Research Unit
Medical Department M (Diabetes and Endocrinology)
Aarhus University Hospital
8000 Aarhus
Denmark
Telefon: +45/8949/21 54
Fax: +45/8949/21 50
eMail: mette.bjerre@ki.au.dk