References and Notes
<A NAME="RS08908ST-1">1</A>
New address: Y. Zhang, Department of
Chemistry, Washington University, Campus Box 1134, One Brookings Drive,
St. Louis, Missouri 63130, USA.
<A NAME="RS08908ST-2">2</A>
Metal-Catalyzed
Cross-Coupling Reactions
2nd ed.:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
For recent reviews, see:
<A NAME="RS08908ST-3A">3a</A>
Jia C.
Kitamura T.
Fujiwara Y.
Acc.
Chem. Res.
2001,
34:
633
<A NAME="RS08908ST-3B">3b</A>
Ritleng V.
Sirlin C.
Pfeffer M.
Chem.
Rev.
2002,
102:
1731
<A NAME="RS08908ST-3C">3c</A>
Godula K.
Sames D.
Science
2006,
312:
67
<A NAME="RS08908ST-3D">3d</A>
Yu J.-Q.
Giri R.
Chen X.
Org.
Biomol. Chem.
2006,
4:
4041
<A NAME="RS08908ST-3E">3e</A>
Alberico D.
Scott ME.
Lautens M.
Chem.
Rev.
2007,
107:
174
<A NAME="RS08908ST-3F">3f</A>
Herrerias CI.
Yao X.
Li Z.
Li C.-J.
Chem. Rev.
2007,
107:
2546
<A NAME="RS08908ST-3G">3g</A>
Li C.-J.
Acc.
Chem. Res.
2008, in press
For examples of oxidative C-C
bond-formation reactions using peroxides as the terminal oxidant,
see:
<A NAME="RS08908ST-4A">4a</A>
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2004,
126:
11810
<A NAME="RS08908ST-4B">4b</A>
Li Z.
Li
C.-J.
Org. Lett.
2004,
6:
4997
<A NAME="RS08908ST-4C">4c</A>
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2005,
127:
3672
<A NAME="RS08908ST-4D">4d</A>
Li Z.
Li C.-J.
J. Am. Chem. Soc.
2005,
127:
6968
<A NAME="RS08908ST-4E">4e</A>
Li Z.
Li C.-J.
Eur. J. Org. Chem.
2005,
3173
<A NAME="RS08908ST-4F">4f</A>
Murahashi S.-I.
Komiya N.
Terai H.
Angew.
Chem. Int. Ed.
2005,
44:
6931
<A NAME="RS08908ST-4G">4g</A>
Li Z.
Li
C.-J.
J. Am. Chem. Soc.
2006,
128:
56
<A NAME="RS08908ST-4H">4h</A>
Li Z.
Bohle
DS.
Li C.-J.
Proc.
Natl. Acad. Sci. U.S.A.
2006,
103:
8928
<A NAME="RS08908ST-4I">4i</A>
Zhang Y.
Li C.-J.
Eur. J. Org. Chem.
2007,
4654
<A NAME="RS08908ST-4J">4j</A>
Li Z.
Cao L.
Li C.-J.
Angew.
Chem. Int. Ed.
2007,
46:
6505
<A NAME="RS08908ST-4K">4k</A>
Deng G.
Zhao L.
Li C.-J.
Angew. Chem.
Int. Ed.
2008,
47:
6278
<A NAME="RS08908ST-4L">4l</A>
Zhao L.
Li C.-J.
Angew. Chem. Int. Ed.
2008,
47:
7075
<A NAME="RS08908ST-4M">4m</A>
Li Z.
Yu R.
Li H.
Angew.
Chem. Int. Ed.
2008,
47:
7497
<A NAME="RS08908ST-4N">4n</A>
Borduas N.
Powell DA.
J. Org. Chem.
2008,
73:
7822
For examples of oxidative C-C
bond-formation reactions using DDQ as the terminal oxidant, see:
<A NAME="RS08908ST-5A">5a</A>
Zhang Y.
Li C.-J.
J. Am. Chem. Soc.
2006,
128:
4242
<A NAME="RS08908ST-5B">5b</A>
Zhang Y.
Li C.-J.
Angew. Chem. Int. Ed.
2006,
45:
1949
<A NAME="RS08908ST-5C">5c</A>
Cheng D.
Bao W.
Adv. Synth. Catal.
2008,
350:
1263
<A NAME="RS08908ST-5D">5d</A>
Cheng D.
Bao W.
J. Org. Chem.
2008,
73:
6881
<A NAME="RS08908ST-6A">6a</A>
Murahashi S.-I.
Komiya N.
Terai H.
Nakae T.
J.
Am. Chem. Soc.
2003,
125:
15312
<A NAME="RS08908ST-6B">6b</A>
Baslé O.
Li C.-J.
Green Chem.
2007,
9:
1047
<A NAME="RS08908ST-6C">6c</A>
Murahashi S.-I.
Nakae T.
Terai H.
Komiya N.
J. Am. Chem. Soc.
2008,
130:
11005
<A NAME="RS08908ST-6D">6d</A>
Baslé O.
Li C.-J.
Org. Lett.
2008,
10:
3661
For reviews on the use of NHPI as
an effective catalyst for oxidation of C-H bonds in oxygen,
see:
<A NAME="RS08908ST-7A">7a</A>
Ishii Y.
Sakaguchi S.
Iwahama T.
Adv.
Synth. Catal.
2001,
343:
393
<A NAME="RS08908ST-7B">7b</A>
Galli C.
Gentili P.
Lanzalunga O.
Angew.
Chem. Int. Ed.
2008,
47:
4790
For representative examples of NHPI
as an effective catalyst for oxidation of C-H bonds in
oxygen, see:
<A NAME="RS08908ST-8A">8a</A>
Ishii Y.
Nakayama K.
Takeno M.
Sakaguchi S.
Iwahama T.
Nishiyama Y.
J. Org. Chem.
1995,
60:
3934
<A NAME="RS08908ST-8B">8b</A>
Ishii Y.
Iwahama T.
Sakaguchi S.
Nakayama K.
Nishiyama Y.
J.
Org. Chem.
1996,
61:
4520
<A NAME="RS08908ST-8C">8c</A>
Kato S.
Iwahama T.
Sakaguchi S.
Ishii Y.
J. Org. Chem.
1998,
63:
222
<A NAME="RS08908ST-8D">8d</A>
Sakaguchi S.
Nishiwaki Y.
Kitamura T.
Ishii Y.
Angew. Chem. Int. Ed.
2001,
40:
222
<A NAME="RS08908ST-8E">8e</A>
Hara T.
Iwahama T.
Sakaguchi S.
Ishii Y.
J. Org. Chem.
2001,
66:
6425
<A NAME="RS08908ST-8F">8f</A>
Hirabayashi T.
Sakaguchi S.
Ishii Y.
Angew.
Chem. Int. Ed.
2004,
43:
1120
<A NAME="RS08908ST-9">9</A>
Lewis acids such as Bi(OTf)3,
Yb(OTf)3, FeCl3, Co(OAc)2 were
screened as co-catalysts with Cu(OTf)2. In all cases, the
yields were considerably lower (<40%) compared
to InCl3.
<A NAME="RS08908ST-10">10</A>
Representative
Procedure and Spectroscopic Data - Synthesis of Dimethyl
2-(3,4-Dihydro-1
H
-isochromen-1-yl)malonate
(3a)
In a sealable test tube equipped with a magnetic
stir bar was charged Cu(OTf)2 (9.5 mg, 0.026 mmol), InCl3 (5.8
mg, 0.026 mmol), and NHPI (17.1 mg, 0.105 mmol). The reaction vessel
was sealed and flushed with O2. The tube was attached
to a balloon of O2 and charged with dimethyl malonate
(1a) (0.060 mL, 0.524 mmol) and isochroman
(2a) (0.33 mL, 2.6 mmol). The test tube
was placed in an oil bath set at 55 ˚C and was
allowed to stir overnight. The reaction mixture was allowed to cooled
to r.t. and the crude reaction mixture was purified by silica gel
column chromatography (EtOAc-hexane, 1:4) to provide the
desired alkylation product 3a (107.1 mg,
0.405 mmol, 77%) as a clear colorless oil.
¹H
NMR (400 MHz, CDCl3): δ = 7.18-7.08
(m, 3 H), 6.99 (d, J = 7.6
Hz, 1 H), 5.45 (d, J = 6.0
Hz, 1 H), 4.15 (dddd, J = 11.2,
4.8, 4.8, 1.6 Hz, 1 H), 3.98 (dd, J = 6.0,
2.0 Hz,
1 H), 3.80-3.73 (m, 1 H), 3.73 (d, J = 2.0 Hz,
3 H), 3.63 (d, J = 2.0
Hz, 3 H), 3.01-2.94 (m, 1 H), 2.69 (d, J = 16.4
Hz,
1 H) ppm. ¹³C NMR (100
MHz, CDCl3): δ = 168.2, 167.3, 134.8,
134.6, 129.3, 127.4, 126.5, 124.7, 74.3, 63.7, 58.2, 53.0, 52.7,
28.8 ppm. This is a known compound and the spectral data are consistent
with those reported in literature.5b
<A NAME="RS08908ST-11">11</A>
Representative
Procedure and Spectroscopic Data - Synthesis of 2-(2,4-dihydro-1
H
-isochromen-1-yl)-1-phenylethanone
(5a)
In a sealable test tube equipped with a magnetic
stir bar was charged Cu(OTf)2 (9.0 mg, 0.025 mmol), InCl3 (5.5
mg, 0.025 mmol), and NHPI (16.3 mg, 0.100 mmol). The reaction vessel
was sealed and flushed with O2. The tube was attached
to a balloon of O2 and charged with acetophenone (4a) (0.058 mL, 0.500 mmol) and isochroman
(2a) (0.31 mL, 2.5 mmol). The test tube
was placed in an oil bath set at 75 ˚C and was
allowed to stir overnight. The reaction mixture was allowed to cooled
to r.t., and the crude reaction mixture was purified by silica gel
column chromatography (EtOAc-hexane, 1:5) to provide the
desired alkylation product 5a (95.0 mg,
0.379 mmol, 75%) as a pale yellow oil.
¹H
NMR (400 MHz, CDCl3): δ = 8.03-8.00
(m, 2 H), 7.59-7.55 (m, 1 H), 7.49-7.45 (m, 2
H), 7.22-7.18 (m, 2 H), 7.16-7.10 (m, 2 H), 5.51
(dd, J = 8.4,
3.2 Hz, 1 H), 4.12 (ddd, J = 10.8,
5.6, 3.6 Hz, 1 H), 3.82 (ddd, J = 3.6,
9.6, 11.2 Hz, 1 H), 3.63 (dd, J = 8.8,
16.6 Hz, 1 H), 3.33 (dd, J = 3.6,
16.0 Hz, 1 H), 3.03 (ddd, J = 5.6,
9.6, 15.6 Hz, 1 H), 2.73 (ddd, J = 3.6,
3.6, 16.4 Hz, 1 H) ppm. ¹³C NMR (100
MHz, CDCl3): δ = 198.3, 137.8, 137.4,
134.3, 133.4, 129.3, 128.8, 128.6, 126.8, 126.5, 124.8, 73.0, 63.8,
45.9, 29.3 ppm. This is a known compound and the spectral data are
consistent with those reported in literature.5a
<A NAME="RS08908ST-12">12</A>
Previously, we proposed a similar
intermediate for the oxidative arylation of cyclic benzyl amines
with aryl boronic acids.6d
Although alcohol 6 was
not observed during the optimization process, we considered it to
be a potential intermediate since benzylic alcohols are known to
undergo alkylation with malonates and diketones in the presence
of metal salts. For recent examples, see:
<A NAME="RS08908ST-13A">13a</A>
Yasuda M.
Somyo T.
Baba A.
Angew.
Chem. Int. Ed.
2006,
45:
793
<A NAME="RS08908ST-13B">13b</A>
Rueping M.
Nachtsheim BJ.
Kuenkel A.
Org.
Lett.
2007,
9:
825
<A NAME="RS08908ST-13C">13c</A>
Kischel J.
Mertins K.
Michalik D.
Zapf A.
Beller M.
Adv.
Synth. Catal.
2007,
349:
865
<A NAME="RS08908ST-13D">13d</A>
Huang W.
Wang J.
Shen Q.
Zhou X.
Tetrahedron Lett.
2007,
48:
3969
<A NAME="RS08908ST-13E">13e</A>
Noji M.
Konno Y.
Ishii K.
J.
Org. Chem.
2007,
72:
5161
<A NAME="RS08908ST-14">14</A> For the preparation of benzylic
alcohol 6, see:
Xu YC.
Lebeau E.
Gillard JW.
Attardo G.
Tetrahedron Lett.
1993,
34:
3841
<A NAME="RS08908ST-15">15</A>
Metal salts are known to reductively
decompose alkyl hydroperoxides to its corresponding alkyloxy radical. Conversely,
metal salts can be oxidized by hydroperoxides and generate hydroperoxide
radicals.7
<A NAME="RS08908ST-16">16</A>
Jones CW. Application
of Hydrogen Peroxide and Derivatives, The Royal Society
of Chemistry;
Cambridge:
1999.