References and Notes
<A NAME="RD35708ST-1">1</A>
Comprehensive
Heterocyclic Chemistry
Vol. 4:
Katritzky AR.
Rees CW.
Pergamon;
Oxford:
1984.
p.476
<A NAME="RD35708ST-2A">2a</A>
Lotter ANC.
Pathak R.
Sello TS.
Fernandes
MA.
Van Otterlo WAL.
de Koning CB.
Tetrahedron
2007,
63:
2263
<A NAME="RD35708ST-2B">2b</A>
Ewing J.
Hughes GK.
Ritchie E.
Taylor WC.
Nature (London)
1952,
169:
618
<A NAME="RD35708ST-3A">3a</A>
Gundersen LL.
Charnock C.
Negussie AH.
Rise F.
Teklu S.
Eur. J. Pharm. Sci.
2007,
30:
26
<A NAME="RD35708ST-3B">3b</A>
Wiede T.
Arve L.
Prinz H.
Waldmann H.
Kessler H.
Bioorg. Med.
Chem. Lett.
2006,
16:
59
<A NAME="RD35708ST-3C">3c</A>
Sonnet P.
Dallemagne P.
Guillon J.
Enguehard C.
Stiebing S.
Tanguy J.
Bureau R.
Rault S.
Auvray P.
Moslemi S.
Sourdaine P.
Seralini GE.
Bioorg. Med. Chem. Lett.
2000,
8:
945
<A NAME="RD35708ST-3D">3d</A>
Ostby OB.
Dalhus B.
Gundersen LL.
Rise F.
Bast A.
Haenen GRMM.
Eur.
J. Org. Chem.
2000,
3763
<A NAME="RD35708ST-3E">3e</A>
Gubin J.
Vogelaer HD.
Inion H.
Houben C.
Lucchetti J.
Mahaux J.
Rosseels G.
Peiren M.
Clinet M.
Polster P.
Chatelain P.
J.
Med. Chem.
1993,
36:
1425
<A NAME="RD35708ST-3F">3f</A>
Bermudez J.
Fake CS.
Joiner GF.
Joiner KA.
King FD.
Miner WD.
Sanger GJ.
J. Med. Chem.
1990,
33:
1924
<A NAME="RD35708ST-3G">3g</A>
Maryanoff BE.
Vaught JL.
Shank RP.
McComsey DF.
Costanzo MJ.
Nortey SO.
J. Med. Chem.
1990,
33:
2793
<A NAME="RD35708ST-3H">3h</A>
Anderson WK.
Heider AR.
Raju N.
Yucht JA.
J.
Med. Chem.
1988,
31:
2097
<A NAME="RD35708ST-4A">4a</A>
Zhu L.
Vimolratna M.
Brown SP.
Medina JC.
Tetrahedron Lett.
2008,
49:
1768
<A NAME="RD35708ST-4B">4b</A>
Hardin AR.
Sarpong R.
Org. Lett.
2007,
9:
4547
<A NAME="RD35708ST-4C">4c</A>
Chuprakov S.
Gevorgyan V.
Org. Lett.
2007,
9:
4463
<A NAME="RD35708ST-4D">4d</A>
Smith CR.
Bunnelle EM.
Rhodes AJ.
Sarpong R.
Org.
Lett.
2007,
9:
1169
<A NAME="RD35708ST-4E">4e</A>
Przewloka T.
Chen S.
Xia Z.
Li H.
Zhang S.
Chimmananmada D.
Kostik E.
James D.
Koya K.
Sun L.
Tetrahedron
Lett.
2007,
48:
5739
<A NAME="RD35708ST-4F">4f</A>
Seregin IV.
Gevorgyan V.
J. Am.
Chem. Soc.
2006,
128:
12050
<A NAME="RD35708ST-4G">4g</A>
Tielmann P.
Hoenke C.
Tetrahedron Lett.
2006,
47:
261
<A NAME="RD35708ST-4H">4h</A>
Marchalin S.
Baumlova B.
Baran P.
Oulyadi H.
Daich A.
J.
Org. Chem.
2006,
71:
9114
<A NAME="RD35708ST-4I">4i</A>
Kaloko J.
Hayford A.
Org. Lett.
2005,
7:
4305
<A NAME="RD35708ST-4J">4j</A>
Bora U.
Saikia A.
Boruah RC.
Org.
Lett.
2003,
5:
435
<A NAME="RD35708ST-4K">4k</A>
Katritzky
AR.
Qiu G.
Yang B.
He HY.
J. Org. Chem.
1999,
64:
7618
<A NAME="RD35708ST-4L">4l</A>
Troll T.
Beckel H.
Bohm CL.
Tetrahedron
1997,
53:
81
<A NAME="RD35708ST-4M">4m</A>
Bonneau R.
Romashin YN.
Liu
MTH.
MacPherson SE.
J.
Chem. Soc., Chem Commun.
1994,
509
<A NAME="RD35708ST-4N">4n</A>
Eberbach W.
Maier W.
Tetrahedron Lett.
1989,
30:
5591
<A NAME="RD35708ST-4O">4o</A>
Matsumoto K.
Uchida T.
Konshi H.
Watanabe Y.
Aoyama K.
Asahi M.
Chem. Lett.
1987,
807
<A NAME="RD35708ST-4P">4p</A>
Andeson WK.
DeRuiter J.
Heider AR.
J. Org. Chem.
1985,
50:
722
<A NAME="RD35708ST-4Q">4q</A>
Pohjala E.
Tetrahedron
Lett.
1972,
13:
2585
<A NAME="RD35708ST-4R">4r</A>
Tamura Y.
Tsujimoto N.
Sumida Y.
Ikeda M.
Tetrahedron
1972,
28:
21
<A NAME="RD35708ST-4S">4s</A>
Basketter N.
Plunkett AO.
J. Chem. Soc., Chem.
Commun.
1971,
1578
<A NAME="RD35708ST-4T">4t</A>
Krock FW.
Krohnke F.
Chem. Ber.
1971,
104:
1645
<A NAME="RD35708ST-5A">5a</A>
Basavaiah D.
Roy S.
Org.
Lett.
2008,
10:
1819
<A NAME="RD35708ST-5B">5b</A>
Basavaiah D.
Reddy RJ.
Org. Biomol. Chem.
2008,
6:
1034
<A NAME="RD35708ST-5C">5c</A>
Basavaiah D.
Aravindu K.
Org. Lett.
2007,
9:
2453
<A NAME="RD35708ST-5D">5d</A>
Basavaiah D.
Reddy KR.
Org. Lett.
2007,
9:
57
<A NAME="RD35708ST-5E">5e</A>
Basavaiah D.
Reddy RJ.
Rao JS.
Tetrahedron Lett.
2006,
47:
73
<A NAME="RD35708ST-5F">5f</A>
Basavaiah D.
Rao JS.
Reddy RJ.
Rao AJ.
Chem Commun.
2005,
2621
<A NAME="RD35708ST-5G">5g</A>
Basavaiah D.
Rao JS.
Reddy RJ.
J.
Org. Chem.
2004,
69:
7379
<A NAME="RD35708ST-5H">5h</A>
Basavaiah D.
Satyanarayana T.
Chem Commun.
2004,
32
<A NAME="RD35708ST-5I">5i</A>
Basavaiah D.
Sharada DS.
Veerendhar A.
Tetrahedron
Lett.
2004,
45:
3081
<A NAME="RD35708ST-5J">5j</A>
Basavaiah D.
Kumaragurubaran N.
Sharada DS.
Reddy RM.
Tetrahedron
2001,
57:
8167
<A NAME="RD35708ST-5K">5k</A>
Basavaiah D.
Sreenivasulu B.
Rao JS.
Tetrahedron
Lett.
2001,
42:
1147
<A NAME="RD35708ST-5L">5l</A>
Basavaiah D.
Satyanarayana T.
Org. Lett.
2001,
3:
3619
<A NAME="RD35708ST-6A">6a</A>
Basavaiah D.
Rao AJ.
Tetrahedron
Lett.
2003,
44:
4365
<A NAME="RD35708ST-6B">6b</A>
Basavaiah D.
Rao AJ.
Chem Commun.
2003,
604
For leading reviews on the Baylis-Hillman
reaction, see:
<A NAME="RD35708ST-7A">7a</A>
Singh V.
Batra S.
Tetrahedron
2008,
64:
4511
<A NAME="RD35708ST-7B">7b</A>
Basavaiah D.
Rao KV.
Reddy RJ.
Chem.
Soc. Rev.
2007,
36:
1581
<A NAME="RD35708ST-7C">7c</A>
Masson G.
Housseman C.
Zhu J.
Angew.
Chem. Int. Ed.
2007,
46:
4614
<A NAME="RD35708ST-7D">7d</A>
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem.
Rev.
2003,
103:
811
<A NAME="RD35708ST-7E">7e</A>
Ciganek E.
Organic Reactions
Vol. 51:
Paquette LA.
Wiley;
New
York:
1997.
p.201
<A NAME="RD35708ST-7F">7f</A>
Basavaiah D.
Dharma Rao P.
Suguna Hyma R.
Tetrahedron
1996,
52:
8001
<A NAME="RD35708ST-7G">7g</A>
Drewes SE.
Roos GHP.
Tetrahedron
1988,
44:
4653
<A NAME="RD35708ST-8A">8a</A>
Zhang Y.
Liu Y.-K.
Kang T.-R.
Hu Z.-K.
Chen
Y.-C.
J. Am. Chem. Soc.
2008,
130:
2456
<A NAME="RD35708ST-8B">8b</A>
Winbush
SM.
Mergott DJ.
Roush WR.
J. Org. Chem.
2008,
73:
1818
<A NAME="RD35708ST-8C">8c</A>
Shi M.
Liu X.-G.
Org. Lett.
2008,
10:
1043
<A NAME="RD35708ST-8D">8d</A>
Amarante GW.
Rezende P.
Cavallaro M.
Coelho F.
Tetrahedron
Lett.
2008,
49:
3744
<A NAME="RD35708ST-8E">8e</A>
Davoust M.
Cantagrel F.
Metzner P.
Briere J.-F.
Org. Biomol. Chem.
2008,
6:
1981
<A NAME="RD35708ST-8F">8f</A>
Utsumi N.
Zhang H.
Tanaka F.
Barbas CF.
Angew. Chem. Int. Ed.
2007,
46:
1878
<A NAME="RD35708ST-8G">8g</A>
Shafiq Z.
Liu L.
Liu Z.
Wang D.
Chen Y.-J.
Org. Lett.
2007,
9:
2525
<A NAME="RD35708ST-8H">8h</A>
Chuprakov S.
Malyshev DA.
Trofimov A.
Gevorgyan V.
J. Am. Chem. Soc.
2007,
129:
14868
<A NAME="RD35708ST-8I">8i</A>
Pigge FC.
Dhanya R.
Hoefgen ER.
Angew. Chem. Int. Ed.
2007,
46:
2887
<A NAME="RD35708ST-8J">8j</A>
Myers EL.
Butts CP.
Aggarwal VK.
Chem. Commun.
2006,
4434
<A NAME="RD35708ST-8K">8k</A>
Dadwal M.
Mohan R.
Panda D.
Mobin SM.
Namboothiri
INN.
Chem. Commun.
2006,
338
<A NAME="RD35708ST-8L">8l</A>
Krafft ME.
Wright
JA.
Chem.
Commun.
2006,
2977
<A NAME="RD35708ST-8M">8m</A>
Rao JS.
Briere
J.-F.
Metzner P.
Basavaiah D.
Tetrahedron Lett.
2006,
47:
3553
<A NAME="RD35708ST-8N">8n</A>
Berkessel A.
Roland K.
Neudorfl JM.
Org. Lett.
2006,
8:
4195
<A NAME="RD35708ST-8O">8o</A>
Wang J.
Li H.
Yu X.
Zu L.
Wang W.
Org. Lett.
2005,
7:
4293
<A NAME="RD35708ST-8P">8p</A>
Turki T.
Villieras J.
Amri H.
Tetrahedron
Lett.
2005,
46:
3071
<A NAME="RD35708ST-8Q">8q</A>
Kabalka GW.
Venkataiah B.
Tetrahedron
Lett.
2005,
46:
7325
<A NAME="RD35708ST-8R">8r</A>
Gowri Shankar S.
Lee KY.
Lee CG.
Kim JN.
Tetrahedron
Lett.
2004,
45:
6141
<A NAME="RD35708ST-8S">8s</A>
Jellerichs BG.
Kong JR.
Krische MJ.
J. Am. Chem. Soc.
2003,
125:
7758
<A NAME="RD35708ST-8T">8t</A>
McDougal NT.
Schaus SE.
J.
Am. Chem. Soc.
2003,
125:
12094
<A NAME="RD35708ST-8U">8u</A>
Pei W.
Wei HX.
Li G.
Chem. Commun.
2002,
17:
1856
<A NAME="RD35708ST-8V">8v</A>
Lee WD.
Yang KS.
Chen K.
Chem.
Commun.
2001,
1612
<A NAME="RD35708ST-8W">8w</A>
Basavaiah D.
Muthukumaran K.
Sreenivasulu B.
Synthesis
2000,
545
<A NAME="RD35708ST-8X">8x</A>
Basavaiah D.
Suguna Hyma R.
Padmaja K.
Krishnamacharyulu M.
Tetrahedron
1999,
55:
6971
<A NAME="RD35708ST-8Y">8y</A>
Basavaiah D.
Gowriswari VVL.
Sarma PKS.
Rao PD.
Tetrahedron
Lett.
1990,
31:
1621
<A NAME="RD35708ST-8Z">8z</A>
Basavaiah D.
Gowriswari VVL.
Synth.
Commun.
1987,
17:
587
<A NAME="RD35708ST-9A">9a</A>
Bode ML.
Kaye PT.
J.
Chem. Soc., Perkin Trans. 1
1993,
1809
<A NAME="RD35708ST-9B">9b</A>
Bode ML.
Kaye PT.
J.
Chem. Soc., Perkin Trans. 1
1990,
2612
Allyl bromides (as a mixture of E- and Z-isomers)
were prepared by treatment of the Baylis-Hillman alcohols
with HBr in the presence of H2SO4 following
the literature procedure. See:
<A NAME="RD35708ST-10A">10a</A>
Buchholz R.
Hoffmann HMR.
Helv. Chim.
Acta
1991,
74:
1213
<A NAME="RD35708ST-10B">10b</A>
Ameer F.
Drewes SE.
Emslie ND.
Kaye PT.
Mann RL.
J. Chem. Soc., Perkin Trans. 1
1983,
2293
<A NAME="RD35708ST-11">11</A>
1-Aza-8-cyano-7-phenylbicyclo[4.3.0]nona-2,4,6,8-tetraene (2a) - Representative Procedure
To
2-(bromomethyl)-3-phenylprop-2-enenitrile
[¹0]
(1
mmol, 0.222 g) pyridine (3 mL) was added and stirred for 15 min (formation
of pyridinium salt was observed as shown by TLC) at r.t. The reaction
mixture was diluted with DMF (3 mL) and K2CO3 (5
mmol, 0.690 g) was added. The reaction mixture was then heated at
80 ˚C for 3 h and was allowed to cool to r.t.
Saturated aq NaCl soln (5 mL) was added and extracted with CH2Cl2 (5 × 10
mL). The combined organic layer was dried over anhyd Na2SO4.
Solvent was evaporated, and the residue, thus obtained, was purified
by column chromatography (SiO2, 5% EtOAc in
hexanes) to furnish the pure compound 2a as
a colorless solid. Yield 52% (0.114 g); mp 128-130 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 6.60-6.70 (m,
1 H), 6.77-6.86 (m, 1 H), 7.32-7.40 (m, 1 H),
7.46-7.53 (m, 2 H), 7.56-7.68 (m, 3 H), 7.74 (s,
1 H), 7.88 (d, 1 H, J = 7.2
Hz). ¹³C NMR (100 MHz, CDCl3): δ = 96.94,
113.60, 116.22, 117.46, 118.16, 118.92, 120.05, 125.31, 127.15, 128.67,
129.00, 129.68, 132.56. IR (KBr): ν = 2222 cm-¹. LC-MS: m/z = 219 [M + H]+.
Anal. Calcd for C15H10N2: C, 82.55;
H, 4.62; N, 12.84. Found: C, 82.51; H, 4.65; N, 12.70.
<A NAME="RD35708ST-12">12</A>
Detailed X-ray crystallographic data
are available from the CCDC, 12 Union road, Cambridge CB2 1EZ, UK;
for compounds 2a (CCDC # 693505), 3a (CCDC # 693506), 4a (CCDC # 693507).
<A NAME="RD35708ST-13">13</A>
1-Aza-12-cyano-11-phenyltricyclo[8.3.0.0
²,7
]trideca-2,4,-6,8,10,12-hexaene (3a) - Representative Procedure
To
a stirred solution of 2-(bromomethyl)-3-phenylprop-2-enenitrile
(1 mmol, 0.222 g) in DMF (3 mL) was added quinoline (2 mmol, 0.258
g) at r.t. After stirring for 1 h (salt formation was observed as
evidenced by TLC), K2CO3 (5 mmol, 0.690 g)
was added and heated for 5 h at 80 ˚C. The reaction
mixture was allowed to cool to r.t. and diluted with sat. aq NaCl
soln (5 mL) and extracted with CH2Cl2 (5 × 10 mL).
The combined organic layers were dried over anhyd Na2SO4.
Solvent was evaporated, and the residue, thus obtained, was purified
by column chromatography (SiO2, 8% EtOAc in
hexanes) to furnish the pure compound 3a as
a colorless solid. Yield 45% (0.120 g); mp 160-162 ˚C.
¹H
NMR (400 MHz, CDCl3): δ = 7.11 (d,
1 H, J = 9.6
Hz), 7.34-7.68 (m, 9 H), 7.85 (d, 1 H, J = 8.4
Hz), 8.26 (s, 1 H). ¹³C NMR (100 MHz,
CDCl3): δ = 96.68, 114.43, 116.19, 117.35,
118.04, 120.39, 122.03, 124.52, 125.64, 127.50, 128.10, 128.84,
128.92, 129.00, 129.05, 132.28, 132.38.
IR (KBr): ν = 2226
cm-¹. LC-MS: m/z = 269 [M + H]+.
Anal. Calcd for C19H12N2: C, 85.05;
H, 4.51; N, 10.44. Found: C, 85.11; H, 4.54; N, 10.57.
<A NAME="RD35708ST-14">14</A>
The single crystal X-ray structure
revealed the presence of two molecules in the asymmetric unit. For
clarity we have shown one molecule in the ORTEP diagram.