Horm Metab Res 2009; 41(3): 183-189
DOI: 10.1055/s-0028-1093345
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Expression and Secretion of RANTES (CCL5) in Human Adipocytes in Response to Immunological Stimuli and Hypoxia

T. Skurk 1 , I. Mack 1 , K. Kempf 2 , H. Kolb 2 , H. Hauner 1 , C. Herder 2
  • 1Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Freising, Germany
  • 2Institute for Clinical Diabetes Research, German Diabetes Center, Leibniz Center at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
Further Information

Publication History

received 17.06.2008

accepted 23.09.2008

Publication Date:
27 October 2008 (online)

Abstract

Obesity and related disorders represent states of systemic low-grade inflammation. Chemokine secretion by adipocytes may initiate leukocyte infiltration in obese adipose tissue and thus mediate an important step in the establishment of chronic immune activation. The chemokine RANTES (regulated upon activation normal T cell expressed and secreted)/CCL5 is a chemoattractant for various leukocyte subsets. This study was designed to examine whether RANTES is expressed and released by human adipocytes and how its expression is regulated. RANTES expression under basal conditions was studied in mature adipocytes. Cells were therefore challenged with lipopolysaccharide (LPS), interferon (IFN)-γ, interleukin (IL)-4, monocyte chemoattractant protein (MCP)-1 or exposed to low oxygen pressure. RANTES was expressed and secreted constitutively in most samples of mature adipocytes from the omental and the subcutaneous depot. RANTES release was dependent on adipocyte size and also seemed to be higher from cells of obese donors. Hypoxia (4% O2) caused an approximately 36% increase of RANTES release. Human adipocytes express the chemokine RANTES and are thus identified as a novel cellular source of this immune mediator. LPS and IFNγ do not seem to play a significant role for the expression of RANTES in contrast to moderate hypoxia, which points to a distinct role in the innate immune system.

References

  • 1 Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase.  J Clin Invest. 1995;  95 2111-2119
  • 2 Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.  J Clin Invest. 1995;  95 2409-2415
  • 3 Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originat-ing from adipose tissue?.  Arterioscler Thromb Vasc Biol. 1999;  19 972-978
  • 4 Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, Vidal H, Hainque B. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss.  J Clin Endocrinol Metab. 2000;  85 3338-3342
  • 5 Esposito K, Pontillo A, Ciotola M, Palo C Di, Grella E, Nicoletti G, Giugliano D. Weight loss reduces interleukin-18 levels in obese women.  J Clin Endocrinol Metab. 2002;  87 3864-3866
  • 6 Esposito K, Pontillo A, Palo C Di, Giugliano G, Masella M, Marfella R, Giugliano D. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial.  JAMA. 2003;  289 1799-1804
  • 7 Taleb S, Cancello R, Poitou C, Rouault C, Sellam P, Levy P, Bouillot JL, Coussieu C, Basdevant A, Guerre-Millo M, Lacasa D, Clement K. Weight loss reduces adipose tissue cathepsin S and its circulating levels in morbidly obese women.  J Clin Endocrinol Metab. 2006;  91 1042-1047
  • 8 Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes.  Diabetes Care. 2004;  27 813-823
  • 9 Kolb H, Mandrup-Poulsen T. An immune origin of type 2 diabetes?.  Diabetologia. 2005;  48 1038-1050
  • 10 Herder C, Haastert B, Müller-Scholze S, Koenig W, Thorand B, Holle R, Wichmann HE, Scherbaum WA, Martin S, Kolb H. Association of systemic chemokine concentrations with impaired glucose tolerance and type 2 diabetes: results from the Cooperative Health Research in the Region of Augsburg Survey S4 (KORA S4).  Diabetes. 2005;  54 ((Suppl 2)) S11-S17
  • 11 Kempf K, Hector J, Strate T, Schwarzloh B, Rose B, Herder C, Martin S, Algenstaedt P. Immune-mediated activation of the endocannabinoid system in visceral adipose tissue in obesity.  Horm Metab Res. 2007;  39 596-600
  • 12 Frayn KN, Tan GD, Karpe F. Adipose tissue: a key target for dia-betes pathophysiology and treatment?.  Horm Metab Res. 2007;  39 739-742
  • 13 Kempf K, Rathmann W, Herder C. Impaired glucose regulation and type 2 diabetes in children and adolescents.  Diabetes Metab Res Rev. 2008;  24 427-437
  • 14 Bornstein SR, Abu-Asab M, Glasow A, Päth G, Hauner H, Tsokos M, Chrousos GP, Scherbaum WA. Immunohistochemical and ultrastructural localization of leptin and leptin receptor in human white adipose tissue and differentiating human adipose cells in primary culture.  Diabetes. 2000;  49 532-538
  • 15 Weisberg SP, MacCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue.  J Clin Invest. 2003;  112 1796-1808
  • 16 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance.  J Clin Invest. 2003;  112 1821-1830
  • 17 Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbelink M, Andre M, Casteilla L, Penicaud L. Adipose tissues as an ancestral immune organ: site-specific change in obesity.  FEBS Lett. 2005;  579 3487-3492
  • 18 Robker RL, Collins RG, Beaudet AL, Mersmann HJ, Smith CW. Leukocyte migration in adipose tissue of mice null for ICAM-1 and Mac-1 adhesion receptors.  Obes Res. 2004;  12 936-940
  • 19 Kershaw EE, Flier JS. Adipose tissue as an endocrine organ.  J Clin Endocrinol Metab. 2004;  89 2548-2556
  • 20 Hauner H. Secretory factors from human adipose tissue and their functional role.  Proc Nutr Soc. 2005;  65 163-169
  • 21 Janke J, Engeli S, Gorzelniak K, Feldpausch M, Heintze U, Bohnke J, Wellner M, Herse F, Lassalle P, Luft FC, Sharma AM. Adipose tissue and circulating endothelial cell specific molecule-1 in human obesity.  Horm Metab Res. 2006;  38 28-33
  • 22 Fischer-Posovszky P, Wabitsch M, Hochberg Z. Endocrinology of adipose tissue – an update.  Horm Metab Res. 2007;  39 314-321
  • 23 Hector J, Schwarzloh B, Goehring J, Strate TG, Hess UF, Deuretzbacher G, Hansen-Algenstaedt N, Beil FU, Algenstaedt P. TNF-alpha alters visfatin and adiponectin levels in human fat.  Horm Metab Res. 2007;  39 250-255
  • 24 Skurk T, Kolb H, Müller-Scholze S, Röhrig K, Hauner H, Herder C. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes.  Eur J Endocrinol. 2005;  152 863-868
  • 25 Skurk T, Herder C, Kraft I, Müller-Scholze S, Hauner H, Kolb H. Production and release of macrophage migration inhibitory factor from human adipocytes.  Endocrinology. 2005;  146 1006-1011
  • 26 Herder C, Hauner H, Kempf K, Kolb H, Skurk T. Constitutive and regulated expression and secretion of interferon-gamma-inducible protein 10 (IP-10/CXCL10) in human adipocytes.  Int J Obes (Lond). 2007;  31 403-410
  • 27 Veillard NR, Kwak B, Pelli G, Mulhaupt F, James RW, Proudfoot AE, Mach F. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice.  Circ Res. 2004;  94 253-261
  • 28 Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S. Significance of chemokines and activated platelets in patients with diabetes.  Clin Exp Immunol. 2000;  121 437-443
  • 29 Herder C, Illig T, Baumert J, Müller M, Klopp N, Khuseyinova N, Meisinger C, Poschen U, Martin S, Koenig W, Thorand B. RANTES/CCL5 gene polymorphisms, serum concentrations and incident type 2 diabetes: Results from the MONICA/KORA Augsburg Case-Cohort Study, 1984–2002.  Eur J Endocrinol. 2008;  158 R1-R5
  • 30 Meurer R, Riper G Van, Feeney W, Cunningham P, Hora Jr D, Springer MS, MacIntyre DE, Rosen H. Formation of eosinophilic and monocytic intradermal inflammatory sites in the dog by injection of human RANTES but not human monocyte chemoattractant protein 1, human macrophage inflammatory protein 1 alpha, or human interleukin 8.  J Exp Med. 1993;  178 1913-1921
  • 31 Appay V, Rowland-Jones SL. RANTES: a versatile and controversial chemokine.  Trends Immunol. 2001;  22 83-87
  • 32 Schall TJ. Biology of the RANTES/SIS cytokine family.  Cytokine. 1991;  3 165-183
  • 33 Alam R, Stafford S, Forsythe P, Harrison R, Faubion D, Lett-Brown MA, Grant JA. RANTES is a chemotactic and activating factor for human eosinophils.  J Immunol. 1993;  150 3442-3448
  • 34 Ding Z, Xiong K, Issekutz TB. Regulation of chemokine-induced transendothelial migration of T lymphocytes by endothelial activation: differential effects on naive and memory T cells.  J Leukoc Biol. 2000;  67 825-833
  • 35 Appay V, Brown A, Cribbes S, Randle E, Czaplewski LG. Aggregation of RANTES is responsible for its inflammatory properties. Characterization of nonaggregating, noninflammatory RANTES mutants.  J Biol Chem. 1999;  274 27505-27512
  • 36 Schäffler A, Fürst A, Buchler C, Paul G, Rogler G, Schölmerich J, Herfarth H. Secretion of RANTES (CCL5) and interleukin-10 from mesenteric adipose tissue and from creeping fat in Crohn's disease: regulation by steroid treatment.  J Gastroenterol Hepatol. 2006;  21 1412-1418
  • 37 Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, Sweeney JF, Peterson LE, Chan L, Smith CW, Ballantyne CM. T-Cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity.  Circulation. 2007;  115 1029-1038
  • 38 Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion.  J Clin Endocrinol Metab. 2007;  92 1023-1033
  • 39 Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes.  Pflugers Arch. 2007;  455 479-492
  • 40 Wabitsch M, Brenner RE, Melzner I, Braun M, Möller P, Heinze E, Debatin KM, Hauner H. Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation.  Int J Obes Relat Metab Disord. 2001;  25 8-15
  • 41 Do MS, Jeong HS, Choi BH, Hunter L, Langley S, Pazmany L, Trayhurn P. Inflammatory gene expression patterns revealed by DNA microarray analysis in TNF-alpha-treated SGBS human adipocytes.  Yonsei Med J. 2006;  47 729-736
  • 42 Jager W de, te Velthuis H, Prakken BJ, Kuis W, Rijkers GT. Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells.  Clin Diagn Lab Immunol. 2003;  10 133-139
  • 43 Kempf K, Haltern G, Füth R, Herder C, Müller-Scholze S, Gulker H, Martin S. Increased TNF-alpha and decreased TGF-beta expression in peripheral blood leukocytes after acute myocardial infarction.  Horm Metab Res. 2006;  38 346-351
  • 44 Kempf K, Rose B, Herder C, Haastert B, Fusbahn-Laufenburg A, Reifferscheid A, Scherbaum WA, Kolb H, Martin S. The metabolic syndrome sensitizes leukocytes for glucose-induced immune gene expression.  J Mol Med. 2007;  85 389-396
  • 45 Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation.  Diabetes. 2007;  56 901-911
  • 46 Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R, Bouloumie A. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes.  Diabetes. 2004;  53 1285-1292
  • 47 Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y. Human epicardial adipose tissue is a source of inflammatory mediators.  Circulation. 2003;  108 2460-2466
  • 48 Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, Fischer-Posovszky P, Barth TF, Dragun D, Skurk T, Hauner H, Blüher M, Unger T, Wolf AM, Knippschild U, Hombach V, Marx N. T-lymphocyte infiltration in visceral adipose tissue. A primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance.  Arterioscler Thromb Vasc Biol. 2008;  28 1304-1310
  • 49 Henrichot E, Juge-Aubry CE, Pernin A, Pache JC, Velebit V, Dayer JM, Meda P, Chizzolini C, Meier CA. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis?.  Arterioscler Thromb Vasc Biol. 2005;  25 2594-2599
  • 50 Maury E, Ehala-Aleksejev K, Guiot Y, Detry R, Vandenhooft A, Brichard SM. Adipokines oversecreted by omental adipose tissue in human obesity.  Am J Physiol Endocrinol Metab. 2007;  293 E656-E665
  • 51 Poulain-Godefroy O, Froguel P. Preadipocyte response and impairment of differentiation in an inflammatory environment.  Biochem Biophys Res Commun. 2007;  356 662-667
  • 52 Murdolo G, Herder C, Wang Z, Rose B, Schmelz M, Jansson PA. In situ profiling of adipokines in subcutaneous microdialysates from lean and obese individuals.  Am J Physiol Endocrinol Metab. 2008;  , [Epub ahead of print]
  • 53 Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adi-pose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid.  J Clin Endocrinol Metab. 1998;  83 847-850
  • 54 Hube F, Birgel M, Lee YM, Hauner H. Expression pattern of tumour necrosis factor receptors in subcutaneous and omental human adipose tissue: role of obesity and non-insulin-dependent diabetes mellitus.  Eur J Clin Invest. 1999;  29 672-678
  • 55 Bruun JM, Lihn AS, Madan AK, Pedersen SB, Schiott KM, Fain JN, Richelsen B. Higher production of IL-8 in visceral vs. subcutaneous adipose tissue. Implication of nonadipose cells in adipose tissue.  Am J Physiol Endocrinol Metab. 2004;  286 E8-E13
  • 56 Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans.  Endocrinology. 2004;  145 2273-2282
  • 57 Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT.  J Clin Endocrinol Metab. 2005;  90 2282-2289
  • 58 Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance.  Diabetologia. 2000;  43 1498-1506
  • 59 Cho CH, Koh YJ, Han J, Sung HK, Jong LH, Morisada T, Schwendener RA, Brekken RA, Kang G, Oike Y, Choi TS, Suda T, Yoo OJ, Koh GY. Angiogenic role of LYVE-1-positive macrophages in adipose tissue.  Circ Res. 2007;  100 e47-e57
  • 60 Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice.  Am J Physiol Endocrinol Metab. 2007;  293 E1118-E1128
  • 61 Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration.  Int J Obes (Lond). 2008;  32 451-463

Correspondence

Dr. T. SkurkMD 

Else Kröner-Fresenius-Zentrum für Ernährungsmedizin

Technische Universität München

Am Forum 5

85350 Freising

Germany

Phone: +49/816/171 20 01

Fax: +49/816/171 20 97

Email: nutritional.medicine@wzw.tum.de