Semin Respir Crit Care Med 2008; 29(6): 662-669
DOI: 10.1055/s-0028-1101276
© Thieme Medical Publishers

Metal-Induced Diffuse Lung Disease

Andrew P. Fontenot1 , 2 , Massimo Amicosante3
  • 1Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado
  • 2Department of Immunology, University of Colorado Health Sciences Center, Denver, Colorado
  • 3Department of Internal Medicine, University of Rome “Tor Vergata,” Rome, Italy
Further Information

Publication History

Publication Date:
16 February 2009 (online)

ABSTRACT

The number of metals that are associated with the development of diffuse parenchymal lung disease continues to expand. In addition to lung fibrosis, inhalation of metal particulates can induce a wide range of lung pathology, including reactive airways disease and cancer. This article focuses on diffuse parenchymal diseases resulting from the inhalation of beryllium and cobalt. More is known regarding the immunopathogenesis of beryllium-induced disease than is known for disease induced by any other metal. Chronic beryllium disease (CBD) is a granulomatous lung disorder caused by beryllium exposure in the workplace and is characterized by the accumulation of beryllium-specific CD4+ T cells in the bronchoalveolar lavage. Genetic susceptibility markers associated with increased risk have been identified for both CBD and hard metal lung disease. The mechanism for the genetic susceptibility of CBD lies in the ability of certain human leukocyte antigen (HLA)-DP molecules to bind and present beryllium to pathogenic CD4+ T cells. Whether the same is true for hard metal lung disease is unknown. In contrast, no HLA allelic association has been identified in nickel allergic subjects. The study of metal-induced lung disease allows the investigation of the relationship between environmental exposure and genetic susceptibility. These studies will enhance our understanding of the immunopathogenesis of metal-induced disease and how exposure to these metals results in irreversible lung fibrosis.

REFERENCES

  • 1 Newman L S, Maier L A. Beryllium disease. In: Schwarz MI, King TE Jr Interstitial Lung Disease. 3rd ed. Hamilton; BC Decker 2003: 435-451
  • 2 Kelleher P C, Martyny J W, Mroz M M et al.. Beryllium particulate exposure and disease relations in a beryllium machining plant.  J Occup Environ Med. 2001;  43 238-249
  • 3 Kreiss K, Mroz M M, Newman L S, Martyny J, Zhen B. Machining risk of beryllium disease and sensitization with median exposures below 2 μg/m3 .  Am J Ind Med. 1996;  30 16-25
  • 4 Kreiss K, Newman L S, Mroz M, Campbell P A. Screening blood test identifies subclinical beryllium disease.  J Occup Med. 1989;  31 603-608
  • 5 Kreiss K, Wasserman S, Mroz M M, Newman L S. Beryllium disease screening in the ceramics industry: blood test performance and exposure-disease relations.  J Occup Med. 1993;  35 267-274
  • 6 Kreiss K, Mroz M M, Zhen B, Martyny J W, Newman L S. Epidemiology of beryllium sensitization and disease in nuclear workers.  Am Rev Respir Dis. 1993;  148 985-991
  • 7 Henneberger P K, Cumro D, Deubner D D, Kent M S, McCawley M, Kreiss K. Beryllium sensitization and disease among long-term and short-term workers in a beryllium ceramics plant.  Int Arch Occup Environ Health. 2001;  74 167-176
  • 8 Newman L S, Mroz M M, Balkissoon R, Maier L A. Beryllium sensitization progresses to chronic beryllium disease: a longitudinal study of disease risk.  Am J Respir Crit Care Med. 2004;  171 54-60
  • 9 Fontenot A P, Newman L S, Kotzin B L. Chronic beryllium disease: T cell recognition of a metal presented by HLA-DP.  Clin Immunol. 2001;  100 4-14
  • 10 Fontenot A P, Kotzin B L. Chronic beryllium disease: immune-mediated destruction with implications for organ-specific autoimmunity.  Tissue Antigens. 2003;  62 449-458
  • 11 Newman L S, Kreiss K, King Jr T E, Seay S, Campbell P A. Pathologic and immunologic alterations in early stages of beryllium disease: re-examination of disease definition and natural history.  Am Rev Respir Dis. 1989;  139 1479-1486
  • 12 Williams W J, Kelland D. New aid for diagnosing chronic beryllium disease (CBD): laser ion mass analysis (LIMA).  J Clin Pathol. 1986;  39 900-901
  • 13 Williams W J, Wallach E R. Laser microprobe mass spectrometry (LAMMS) analysis of beryllium, sarcoidosis, and other granulomatous diseases.  Sarcoidosis. 1989;  6 111-117
  • 14 Newman L S, Lloyd J, Daniloff E. The natural history of beryllium sensitization and chronic beryllium disease.  Environ Health Perspect. 1996;  104 (Suppl 5) 937-943
  • 15 Rossman M D, Kern J A, Elias J A et al.. Proliferative response of bronchoalveolar lymphocytes to beryllium.  Ann Intern Med. 1988;  108 687-693
  • 16 Saltini C, Winestock K, Kirby M, Pinkston P, Crystal R G. Maintenance of alveolitis in patients with chronic beryllium disease by beryllium-specific helper T cells.  N Engl J Med. 1989;  320 1103-1109
  • 17 Saltini C, Kirby M, Trapnell B C, Tamura N, Crystal R G. Biased accumulation of T lymphocytes with “memory”-type CD45 leukocyte common antigen gene expression on the epithelial surface of the human lung.  J Exp Med. 1990;  171 1123-1140
  • 18 Fontenot A P, Falta M T, Freed B M, Newman L S, Kotzin B L. Identification of pathogenic T cells in patients with beryllium-induced lung disease.  J Immunol. 1999;  163 1019-1026
  • 19 Fontenot A P, Kotzin B L, Comment C E, Newman L S. Expansions of T-cell subsets expressing particular T cell receptor variable regions in chronic beryllium disease.  Am J Respir Cell Mol Biol. 1998;  18 581-589
  • 20 Fontenot A P, Maier L A, Canavera S J et al.. Beryllium skin patch testing to analyze T cell stimulation and granulomatous inflammation in the lung.  J Immunol. 2002;  168 3627-3634
  • 21 Fontenot A P, Canavera S J, Gharavi L, Newman L S, Kotzin B L. Target organ localization of memory CD4+ T cells in patients with chronic beryllium disease.  J Clin Invest. 2002;  110 1473-1482
  • 22 Pott G B, Palmer B E, Sullivan A K et al.. Frequency of beryllium-specific, TH1-type cytokine-expressing CD4+ T cells in patients with beryllium-induced disease.  J Allergy Clin Immunol. 2005;  115 1036-1042
  • 23 Fontenot A P, Palmer B E, Sullivan A K et al.. Frequency of beryllium-specific, central memory CD4+ T cells in blood determines proliferative response.  J Clin Invest. 2005;  115 2886-2893
  • 24 Tinkle S S, Kittle L A, Schumacher B A, Newman L S. Beryllium induces IL-2 and IFN-γ in berylliosis.  J Immunol. 1997;  158 518-526
  • 25 Richeldi L, Sorrentino R, Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium disease.  Science. 1993;  262 242-244
  • 26 Richeldi L, Kreiss K, Mroz M M, Zhen B, Tartoni P, Saltini C. Interaction of genetic and exposure factors in the prevalence of berylliosis.  Am J Ind Med. 1997;  32 337-340
  • 27 Wang Z, White P S, Petrovic M et al.. Differential susceptibilities to chronic beryllium disease contributed by different Glu69 HLA-DPB1 and -DPA1 alleles.  J Immunol. 1999;  163 1647-1653
  • 28 Saltini C, Richeldi L, Losi M et al.. Major histocompatibility locus genetic markers of beryllium sensitization and disease.  Eur Respir J. 2001;  18 677-684
  • 29 Wang Z, Farris G M, Newman L S et al.. Beryllium sensitivity is linked to HLA-DP genotype.  Toxicology. 2001;  165 27-38
  • 30 Rossman M D, Stubbs J, Lee C W, Argyris E, Magira E, Monos D. Human leukocyte antigen class II amino acid epitopes: susceptibility and progression markers for beryllium hypersensitivity.  Am J Respir Crit Care Med. 2002;  165 788-794
  • 31 Maier L A, McGrath D S, Sato H et al.. Influence of MHC class II in susceptibility to beryllium sensitization and chronic beryllium disease.  J Immunol. 2003;  171 6910-6918
  • 32 McCanlies E C, Ensey J S, Schuler C R, Kreiss K, Weston A. The association between HLA-DPB1Glu69 and chronic beryllium disease and beryllium sensitization.  Am J Ind Med. 2004;  46 95-103
  • 33 Amicosante M, Berretta F, Rossman M et al.. Identification of HLA-DRPheß47 as the susceptibility marker of hypersensitivity to beryllium in individuals lacking the berylliosis-associated supratypic marker HLA-DPGlubeta69.  Respir Res. 2005;  6 94
  • 34 Fontenot A P, Torres M, Marshall W H, Newman L S, Kotzin B L. Beryllium presentation to CD4+ T cells underlies disease susceptibility HLA-DP alleles in chronic beryllium disease.  Proc Natl Acad Sci U S A. 2000;  97 12717-12722
  • 35 Lombardi G, Germain C, Uren J et al.. HLA-DP allele-specific T cell responses to beryllium account for DP- associated susceptibility to chronic beryllium disease.  J Immunol. 2001;  166 3549-3555
  • 36 Bill J R, Mack D G, Falta M T et al.. Beryllium presentation to CD4 + T cells is dependent on a single amino acid residue of the MHC class II beta-chain.  J Immunol. 2005;  175 7029-7037
  • 37 Fontenot A P, Keizer T S, McCleskey M et al.. Recombinant HLA-DP2 binds beryllium and tolerizes beryllium-specific pathogenic CD4 + T cells.  J Immunol. 2006;  177 3874-3883
  • 38 De Wall S L, Painter C, Stone J D et al.. Noble metals strip peptides from class II MHC proteins.  Nat Chem Biol. 2006;  2 197-201
  • 39 Penzotti J E, Nepom G T, Lybrand T P. Use of T cell receptor/HLA-DRB1*04 molecular modeling to predict site- specific interactions for the DR shared epitope associated with rheumatoid arthritis.  Arthritis Rheum. 1997;  40 1316-1326
  • 40 Amicosante M, Fontenot A P. T cell recognition in chronic beryllium disease.  Clin Immunol. 2006;  121 134-143
  • 41 Kelleher P, Pacheco K, Newman L S. Inorganic dust pneumonias: the metal-related parenchymal disorders.  Environ Health Perspect. 2000;  108(Suppl 4) 685S-696S
  • 42 Cowie R, Murray J, Becklake M. Pneumoconioses. In: Mason R, Murray J, Broaddus V, Nadel J Murray and Nadel's Textbook of Respiratory Medicine. 4th ed. Philadelphia; Elsevier/Saunders 2005: 1748-1782
  • 43 Meyer-Bisch C, Pham Q T, Mur J M et al.. Respiratory hazards in hard metal workers: a cross sectional study.  Br J Ind Med. 1989;  46 302-309
  • 44 Sprince N L, Chamberlin R I, Hales C A, Weber A L, Kazemi H. Respiratory disease in tungsten carbide production workers.  Chest. 1984;  86 549-557
  • 45 Sprince N L, Oliver L C, Eisen E A, Greene R E, Chamberlin R I. Cobalt exposure and lung disease in tungsten carbide production. A cross-sectional study of current workers.  Am Rev Respir Dis. 1988;  138 1220-1226
  • 46 Zou S, Zou T, Ma F. An epidemiologic study on pulmonary fibrosis caused by hard alloy dust.  Zhonghua Yu Fang Yi Xue Za Zhi. 1995;  29 70-72
  • 47 Posgay M, Nemeth L, Mester A. Radiological aspects of hard metal disease.  Rofo. 1993;  159 439-443
  • 48 Frost A E, Keller C A, Brown R W et al.. Giant cell interstitial pneumonitis: disease recurrence in the transplanted lung.  Am Rev Respir Dis. 1993;  148 1401-1404
  • 49 Forni A. Bronchoalveolar lavage in the diagnosis of hard metal disease.  Sci Total Environ. 1994;  150 69-76
  • 50 Al-Tawil N G, Marcusson J A, Moller E. In vitro testing for cobalt sensitivity: an aid to diagnosis.  Acta Derm Venereol. 1984;  64 203-208
  • 51 Kusaka Y, Nakano Y, Shirakawa T, Morimoto K. Lymphocyte transformation with cobalt in hard metal asthma.  Ind Health. 1989;  27 155-163
  • 52 Potolicchio I, Mosconi G, Forni A, Nemery B, Seghizzi P, Sorrentino R. Susceptibility to hard metal lung disease is strongly associated with the presence of glutamate 69 in HLA-DP beta chain.  Eur J Immunol. 1997;  27 2741-2743
  • 53 Potolicchio I, Festucci A, Hausler P, Sorrentino R. HLA-DP molecules bind cobalt: a possible explanation for the genetic association with hard metal disease.  Eur J Immunol. 1999;  29 2140-2147
  • 54 Voisin C, Fisekci F, Buclez B et al.. Mineralogical analysis of the respiratory tract in aluminum oxide–exposed workers.  Eur Respir J. 1996;  9 1874-1879
  • 55 Lindenschmidt R C, Driscoll K E, Perkins M A, Higgins J M, Maurer J K, Belfiore K A. The comparison of a fibrogenic and two nonfibrogenic dusts by bronchoalveolar lavage.  Toxicol Appl Pharmacol. 1990;  102 268-281
  • 56 Armstrong C W, Moore Jr L W, Hackler R L, Miller Jr G B, Stroube R B. An outbreak of metal fume fever: diagnostic use of urinary copper and zinc determinations.  J Occup Med. 1983;  25 886-888
  • 57 Cohen S R. A review of the health hazards from copper exposure.  J Occup Med. 1974;  16 621-624
  • 58 Ostiguy G, Vaillancourt C, Begin R. Respiratory health of workers exposed to metal dusts and foundry fumes in a copper refinery.  Occup Environ Med. 1995;  52 204-210
  • 59 Pimentel J C, Marques F. “Vineyard sprayer's lung”: a new occupational disease.  Thorax. 1969;  24 678-688
  • 60 Villar T G. Vineyard sprayer's lung: clinical aspects.  Am Rev Respir Dis. 1974;  110 545-555
  • 61 Townshend R H. Acute cadmium pneumonitis: a 17-year follow-up.  Br J Ind Med. 1982;  39 411-412
  • 62 Budinger L, Hertl M. Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview.  Allergy. 2000;  55 108-115
  • 63 Moulon C, Vollmer J, Weltzien H U. Characterization of processing requirements and metal cross-reactivities in T cell clones from patients with allergic contact dermatitis to nickel.  Eur J Immunol. 1995;  25 3308-3315
  • 64 Emtestam L, Zetterquist H, Olerup O. HLA-DR, -DQ and -DP alleles in nickel, chromium, and/or cobalt-sensitive individuals: genomic analysis based on restriction fragment length polymorphisms.  J Invest Dermatol. 1993;  100 271-274
  • 65 Sinigaglia F, Scheidegger D, Garotta G, Scheffer R, Pletscher M, Lanzavecchia A. Isolation and characterization of Ni-specific T cell clones from patients with Ni-contact dermatitis.  J Immunol. 1985;  135 3929-3932
  • 66 Vollmer J, Weltzien H U, Dormoy A, Pistoor F, Moulon C. Functional expression and analysis of a human HLA-DQ restricted, nickel-reactive T cell receptor in mouse hybridoma cells.  J Invest Dermatol. 1999;  113 175-181
  • 67 Sinigaglia F. The molecular basis of metal recognition by T cells.  J Invest Dermatol. 1994;  102 398-401
  • 68 Romagnoli P, Labhardt A M, Sinigaglia F. Selective interaction of Ni with an MHC-bound peptide.  EMBO J. 1991;  10 1303-1306
  • 69 Lu L, Vollmer J, Moulon C, Weltzien H U, Marrack P, Kappler J. Components of the ligand for a Ni +  + reactive human T cell clone.  J Exp Med. 2003;  197 567-574

Andrew P FontenotM.D. 

Division of Clinical Immunology (B-164), University of Colorado Health Sciences Center

4200 East Ninth Ave., Denver, CO 80262

Email: andrew.fontenot@uchsc.edu

    >