RSS-Feed abonnieren
DOI: 10.1055/s-0028-1109378
© Georg Thieme Verlag KG Stuttgart · New York
Von der symptomatischen zur kausalen Therapie?
Neue Entwicklungen in der Pharmakotherapie der Alzheimer-DemenzFrom Symptomatic to Disease Modifying Therapy?Recent Developments in the Pharmacotherapy of Alzheimer’s DiseasePublikationsverlauf
Publikationsdatum:
05. Juni 2009 (online)

Zusammenfassung
Die gegenwärtige Pharmakotherapie der Alzheimer-Demenz (AD) zielt auf die Verbesserung oder Stabilisierung von kognitiver Leistungsfähigkeit und Alltagsaktivitäten, auf eine Verminderung des Auftretens oder eine Reduktion von nicht kognitiven, neuropsychiatrischen Symptomen sowie auf eine Verzögerung der Progression. Zur medikamentösen Behandlung sind diesymptomatisch wirksamen Acetylcholinesterase-Inhibitoren (ACh-I) Donepezil, Galantamin und Rivastigmin sowie der partielle N-Methyl-D-Aspartat-(NMDA)-Antagonist Memantine zugelassen. Neue symptomatisch wirksame Substanzen wie selektive Acetylcholinrezeptor-modulierende Pharmaka oder Histaminrezeptorantagonisten befinden sich gegenwärtig in der Entwicklung. Obwohl krankheitsmodifizierende, kausale Therapien derzeit noch nicht verfügbar sind, gibt es auf den unterschiedlichen Stufen der pharmakologischen Prüfung eine Reihe von Neuentwicklungen, darunter Substanzen, die direkt auf bekannte Pathomechanismen der AD wirken, insbesondere den amyloidogenen Stoffwechselweg der Amyloidvorläufer-Protein-Prozessierung (APP-Prozessierung). Leider konnte trotz präklinisch überzeugender Hinweise auf Wirksamkeit verschiedener Ansätze bisher der klinische Durchbruch bei der „kausalen” pharmakologischen Therapie der AD nicht erreicht werden. Mehrere im Tierversuch erfolgreiche und vielversprechende krankheitsmodifizierende Substanzen fielen jüngst bei der klinischen Prüfung am Patienten durch. Die vorliegende Übersichtsarbeit fasst bewertend die etablierten und insbesondere die neuen und zukünftigen pharmakologischen Therapieoptionen zusammen.
Abstract
Until today the pharmacological therapy of Alzheimer’s disease (AD) is still limited to symptomatic temporary improvement or stabilization of cognitive performance and activities of daily living, and the reduction of neuropsychiatric symptoms of the disease. Available symptomatic treatment options are the acetylcholinesterase inhibitors (ACh-I) donepezil, galantamine, rivastigmine, and the partial N-Methyl-D-Aspartat-(NMDA)-antagonist memantine. Further substances with symptomatic targets, especially selective acetylcholine and histamine receptors, are currently under development. Numerous of disease-modifying substances mainly targeting components of the amyloidogenic pathway of AD are presently studied in different phases of preclinical and clinical trials. Against earlier expectations which derived from promising preclinical immunization studies the breakthrough of disease-modification in AD is not in sight yet. Aim of this review is to summarize established pharmacological treatment options and the stage of development of upcoming symptomatic and disease-modifying substances of AD.
Schlüsselwörter
Alzheimer Demenz - Pharmakotherapie - symptomatisch - krankheitsmodifizierend
Key words
Alzheimer’s Disease - pharmacotherapy - symptomatic - disease-modifying
Literatur
- 1
Wang D, Noda Y, Zhou Y. et al .
The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates
the cognitive dysfunction in beta amyloid25 – 35i. c.v.-injected mice: involvement
of dopaminergic systems.
Neuropsychopharmacology.
2007;
32
1261-1271
Reference Ris Wihthout Link
- 2 Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG .Abschlussbericht A 05 – 19A am 7.2.2007: Cholinesterasehemmer bei Alzheimer Demenz. Köln;
Reference Ris Wihthout Link
- 3
Klein J.
Phenserine.
Expert Opin Investig Drugs.
2007;
16
1087-1097
Reference Ris Wihthout Link
- 4
Utsuki T, Yu Q S, Davidson D. et al .
Identification of novel small molecule inhibitors of amyloid precursor protein synthesis
as a route to lower Alzheimer’s disease amyloid-beta peptide.
J Pharmacol Exp Ther.
2006;
318
855-862
Reference Ris Wihthout Link
- 5
Kadir A, Andreasen N, Almkvist O. et al .
Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s
disease.
Ann Neurol.
2008;
63
621-631
Reference Ris Wihthout Link
- 6
Thatte U.
Phenserine Axonyx.
Curr Opin Investig Drugs.
2005;
6
729-739
Reference Ris Wihthout Link
- 7
Levin E D.
Nicotinic receptor subtypes and cognitive function.
J Neurobiol.
2002;
53
633-640
Reference Ris Wihthout Link
- 8 CoMentis, Pressemeldung vom 7.1.2009: CoMentis Announces Proof-of-Activity-Data from
its Phase I Study of Disease-Modifying Alzheimer’s Disease Therapy;. South San Francisco, CA;
Reference Ris Wihthout Link
- 9 Memory Pharmaceuticals, Pressemitteilung vom 17.9.2008: Memory Pharmaceuticals and
Roche Expand R 3487 /MEM 3454 Development Program;. Montvale, New Jersey;
Reference Ris Wihthout Link
- 10 Memory Pharmaceuticals, Pressemeldung vom 19.12.2008: Memory Pharmaceuticals Reports
Phase 1 Data for R 4996 /MEM 63 908;. Montvale, New Jersey;
Reference Ris Wihthout Link
- 11
Marighetto A, Valerio S, Desmedt A. et al .
Comparative effects of the alpha7 nicotinic partial agonist, S 24 795, and the cholinesterase
inhibitor, donepezil, against aging-related deficits in declarative and working memory
in mice.
Psychopharmacology.
2008;
197
499-508
Reference Ris Wihthout Link
- 12
Dunbar G, Boeijinga P H, Demazieres A. et al .
Effects of TC-1734 (AZD3480), a selective neuronal nicotinic receptor agonist, on
cognitive performance and the EEG of young healthy male volunteers.
Psychopharmacology.
2007;
191
919-929
Reference Ris Wihthout Link
- 13
Bakchine S, Loft H.
Memantine treatment in patients with mild to moderate Alzheimer’s disease: results
of a randomised, double-blind, placebo-controlled 6-month study.
J Alzheimers Dis.
2008;
13
97-107
Reference Ris Wihthout Link
- 14
Dyck C H, Tariot P N, Meyers van B. et al .
A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe
Alzheimer disease.
Alzheimer Dis Assoc Disord.
2007;
21
136-143
Reference Ris Wihthout Link
- 15
Lynch G.
Glutamate-based therapeutic approaches: ampakines.
Curr Opin Pharmacol.
2006;
6
82-88
Reference Ris Wihthout Link
- 16
Lauterborn J C, Rex C S, Kramar E. et al .
Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of
fragile X syndrome.
J Neurosci.
2007;
27
10685-10694
Reference Ris Wihthout Link
- 17
Rex C S, Lauterborn J C, Lin C Y. et al .
Restoration of long-term potentiation in middle-aged hippocampus after induction of
brain-derived neurotrophic factor.
J Neurophysiol.
2006;
96
677-685
Reference Ris Wihthout Link
- 18
Haas H, Panula P.
The role of histamine and the tuberomamillary nucleus in the nervous system.
Nat Rev Neurosci.
2003;
4
121-130
Reference Ris Wihthout Link
- 19
Medhurst A D, Atkins A R, Beresford I J. et al .
GSK189254, a novel H 3 receptor antagonist that binds to histamine H 3 receptors in
Alzheimer’s disease brain and improves cognitive performance in preclinical models.
J Pharmacol Exp Ther.
2007;
321
1032-1045
Reference Ris Wihthout Link
- 20
Brown R E, Stevens D R, Haas H L.
The physiology of brain histamine.
Prog Neurobiol.
2001;
63
637-672
Reference Ris Wihthout Link
- 21
Bachurin S, Bukatina E, Lermontova N. et al .
Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer.
Ann N Y Acad Sci.
2001;
939
425-435
Reference Ris Wihthout Link
- 22
Bachurin S O, Shevtsova E P, Kireeva E G. et al .
Mitochondria as a target for neurotoxins and neuroprotective agents.
Ann N Y Acad Sci.
2003;
993
334-344; discussion 345 – 339
Reference Ris Wihthout Link
- 23
Doody R S, Gavrilova S I, Sano M. et al .
Effect of dimebon on cognition, activities of daily living, behaviour, and global
function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind,
placebo-controlled study.
Lancet.
2008;
372
207-215
Reference Ris Wihthout Link
- 24 Rowe W B, Callahan P M, Hsu C C. Characterization of Serotonin 5 HT6 Receptor Antagonists as Putative Drugs for Age-Related
Cognitive Impairment and Alzheimer’s Disease. International Conference on Alzheimer’s Disease (ICAD) 2008
Reference Ris Wihthout Link
- 25 Memory Pharmaceuticals, Pipeline of Products am 27.1.2009: ”MEM 1003”,. Québec, Canada;
Reference Ris Wihthout Link
- 26 Memory Pharmaceuticals, Pipeline of Products am 27.1.2009: ”MEM 1414”,. Québec, Canada;
Reference Ris Wihthout Link
- 27
Szekely C A, Thorne J E, Zandi P P. et al .
Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a
systematic review.
Neuroepidemiology.
2004;
23
159-169
Reference Ris Wihthout Link
- 28
Akiyama H, Barger S, Barnum S. et al .
Inflammation and Alzheimer’s disease.
Neurobiol Aging.
2000;
21
383-421
Reference Ris Wihthout Link
- 29
Gasparini L, Ongini E, Wilcock D. et al .
Activity of flurbiprofen and chemically related anti-inflammatory drugs in models
of Alzheimer’s disease.
Brain Res Brain Res Rev.
2005;
48
400-408
Reference Ris Wihthout Link
- 30
Czirr E, Weggen S.
Gamma-secretase modulation with Abeta42-lowering nonsteroidal anti-inflammatory drugs
and derived compounds.
Neurodegener Dis.
2006;
3
298-304
Reference Ris Wihthout Link
- 31
Tabet N, Feldmand H.
Ibuprofen for Alzheimer’s disease.
Cochrane Database Syst Rev.
2003;
2
CD004031
Reference Ris Wihthout Link
- 32
Szekely C A, Green R C, Breitner J C. et al .
No advantage of A beta 42-lowering NSAIDs for prevention of Alzheimer dementia in
six pooled cohort studies.
Neurology.
2008;
70
2291-2298
Reference Ris Wihthout Link
- 33
Kukar T L, Ladd T B, Bann M A. et al .
Substrate-targeting gamma-secretase modulators.
Nature.
2008;
453
925-929
Reference Ris Wihthout Link
- 34 Myriad Genetics, Pressemeldung vom 30.8.2008: Results of U.S. Phase 3 Trial of Flurizan™
in Alzheimer’s Disease;. Salt Lake City, UT;
Reference Ris Wihthout Link
- 35
Reid P C, Urano Y, Kodama T. et al .
Alzheimer’s disease: cholesterol, membrane rafts, isoprenoids and statins.
J Cell Mol Med.
2007;
11
383-392
Reference Ris Wihthout Link
- 36
Kurinami H, Sato N, Shinohara M. et al .
Prevention of amyloid beta-induced memory impairment by fluvastatin, associated with
the decrease in amyloid beta accumulation and oxidative stress in amyloid beta injection
mouse model.
Int J Mol Med.
2008;
21
531-537
Reference Ris Wihthout Link
- 37
Fahrenholz F, Postina R.
Alpha-secretase activation – an approach to Alzheimer’s disease therapy.
Neurodegener Dis.
2006;
3
255-261
Reference Ris Wihthout Link
- 38
Schmidt R, Neff F, Lampl C. et al .
Therapy of Alzheimer’s disease: current status and future development.
Neuropsychiatr.
2008;
22
153-171
Reference Ris Wihthout Link
- 39
Dolga A M, Nijholt I M, Ostroveanu A. et al .
Lovastatin induces neuroprotection through tumor necrosis factor receptor 2 signaling
pathways.
J Alzheimers Dis.
2008;
13
111-122
Reference Ris Wihthout Link
- 40
Scott H D, Laake K.
Statins for the prevention of Alzheimer’s disease.
Cochrane Database Syst Rev.
2001;
4
CD003160
Reference Ris Wihthout Link
- 41
Scott H D, Laake K.
Statins for the reduction of risk of Alzheimer’s disease.
Cochrane Database Syst Rev.
2001;
3
CD003160
Reference Ris Wihthout Link
- 42
Jones R W, Kivipelto M, Feldman H. et al .
The Atorvastatin/Donepezil in Alzheimer’s Disease Study (LEADe): design and baseline
characteristics.
Alzheimers Dement.
2008;
4
145-153
Reference Ris Wihthout Link
- 43
Deuss M, Reiss K, Hartmann D.
Part-time alpha-secretases: the functional biology of ADAM 9, 10 and 17.
Curr Alzheimer Res.
2008;
5
187-201
Reference Ris Wihthout Link
- 44
Holback S, Adlerz L, Gatsinzi T. et al .
PI3-K- and PKC-dependent up-regulation of APP processing enzymes by retinoic acid.
Biochem Biophys Res Commun.
2008;
365
298-303
Reference Ris Wihthout Link
- 45
Schobel S, Neumann S, Hertweck M. et al .
A novel sorting nexin modulates endocytic trafficking and alpha-secretase cleavage
of the amyloid precursor protein.
J Biol Chem.
2008;
283
14 257-14 268
Reference Ris Wihthout Link
- 46
Yang H Q, Pan J, Ba M W. et al .
New protein kinase C activator regulates amyloid precursor protein processing in vitro
by increasing alpha-secretase activity.
Eur J Neurosci.
2007;
26
381-391
Reference Ris Wihthout Link
- 47
Siemers E R, Quinn J F, Kaye J. et al .
Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer
disease.
Neurology.
2006;
66
602-604
Reference Ris Wihthout Link
- 48
Santa-Maria I, Hernandez F, Del Rio J. et al .
Tramiprosate, a drug of potential interest for the treatment of Alzheimer’s disease,
promotes an abnormal aggregation of tau.
Mol Neurodegener.
2007;
2
17
Reference Ris Wihthout Link
- 49
Aisen P S, Saumier D, Briand R. et al .
A Phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease.
Neurology.
2006;
67
1757-1763
Reference Ris Wihthout Link
- 50
Aisen P S, Gauthier S, Vellas B. et al .
Alzhemed: a potential treatment for Alzheimer’s disease.
Curr Alzheimer Res.
2007;
4
473-478
Reference Ris Wihthout Link
- 51 Neurochem, Pipeline of Products am 27.1.2009: ”In November 2007, Neurochem announced
the early termination of the European Phase III clinical trial...” Québec, Canada;
Reference Ris Wihthout Link
- 52
Lannfelt L, Blennow K, Zetterberg H. et al .
Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying
therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled
trial.
Lancet Neurol.
2008;
7
779-786
Reference Ris Wihthout Link
- 53
Bush A I, Martins R N, Rumble B. et al .
The amyloid precursor protein of Alzheimer’s disease is released by human platelets.
J Biol Chem.
1990;
265
15977-15983
Reference Ris Wihthout Link
- 54
Pajonk F G, Kessler H, Supprian T. et al .
Cognitive decline correlates with low plasma concentrations of copper in patients
with mild to moderate Alzheimer’s disease.
J Alzheimers Dis.
2005;
8
23-27
Reference Ris Wihthout Link
- 55
Kessler H, Bayer T A, Bach D. et al .
Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease:
a pilot phase 2 clinical trial.
J Neural Transm.
2008;
115
1181-1187
Reference Ris Wihthout Link
- 56
Brody D L, Holtzman D M.
Active and passive immunotherapy for neurodegenerative disorders.
Annu Rev Neurosci.
2008;
31
175-193
Reference Ris Wihthout Link
- 57
Lemere C A, Maier M, Peng Y. et al .
Novel Abeta immunogens: is shorter better?.
Curr Alzheimer Res.
2007;
4
427-436
Reference Ris Wihthout Link
- 58
Schenk D, Barbour R, Dunn W. et al .
Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the
PDAPP mouse.
Nature.
1999;
400
173-177
Reference Ris Wihthout Link
- 59
Hock C, Konietzko U, Papassotiropoulos A. et al .
Generation of antibodies specific for beta-amyloid by vaccination of patients with
Alzheimer disease.
Nat Med.
2002;
8
1270-1275
Reference Ris Wihthout Link
- 60
Senior K.
Dosing in phase II trial of Alzheimer’s vaccine suspended.
Lancet Neurol.
2002;
1
3
Reference Ris Wihthout Link
- 61
Masliah E, Hansen L, Adame A. et al .
Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer
disease.
Neurology.
2005;
64
129-131
Reference Ris Wihthout Link
- 62
Fox N C, Black R S, Gilman S. et al .
Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer
disease.
Neurology.
2005;
64
1563-1572
Reference Ris Wihthout Link
- 63
Gilman S, Koller M, Black R S. et al .
Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted
trial.
Neurology.
2005;
64
1553-1562
Reference Ris Wihthout Link
- 64
Pride M, Seubert P, Grundman M. et al .
Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical
investigations into AN 1792-associated meningoencephalitis.
Neurodegener Dis.
2008;
5
194-196
Reference Ris Wihthout Link
- 65
Bard F, Cannon C, Barbour R. et al .
Peripherally administered antibodies against amyloid beta-peptide enter the central
nervous system and reduce pathology in a mouse model of Alzheimer disease.
Nat Med.
2000;
6
916-919
Reference Ris Wihthout Link
- 66
Dodart J C, Bales K R, Gannon K S. et al .
Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s
disease model.
Nat Neurosci.
2002;
5
452-457
Reference Ris Wihthout Link
- 67 Elan, Pressemitteilung vom 17.6.2008: Elan and Wyeth Announce Encouraging Top-line
Results from Phase 2 Clinical Trial of Bapineuzumab for Alzheimer’s Disease;. Dublin, Ireland & Madison, N.J;
Reference Ris Wihthout Link
- 68
Hooper C, Killick R, Lovestone S.
The GSK3 hypothesis of Alzheimer’s disease.
J Neurochem.
2008;
104
1433-1439
Reference Ris Wihthout Link
- 69
Hattori M, Sugino E, Minoura K. et al .
Different inhibitory response of cyanidin and methylene blue for filament formation
of tau microtubule-binding domain.
Biochem Biophys Res Commun.
2008;
374
158-163
Reference Ris Wihthout Link
- 70
Landreth G, Jiang Q, Mandrekar S. et al .
PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease.
Neurotherapeutics.
2008;
5
481-489
Reference Ris Wihthout Link
- 71
Engler H, Forsberg A, Almkvist O. et al .
Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease.
Brain.
2006;
129
2856-2866
Reference Ris Wihthout Link
- 72
Holmes C, Boche D, Wilkinson D. et al .
Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised,
placebo-controlled phase I trial.
Lancet.
2008;
372
216-223
Reference Ris Wihthout Link
- 73 Affiris, Pressemitteilung vom 16.7.2008: AFFiRiS: Milestone Reached in Clinical Trial
of Alzheimer’s Vaccine;. Vienna, Astria;
Reference Ris Wihthout Link
PD Dr. med. Andreas Fellgiebel
Klinik für Psychiatrie und Psychotherapie, Universitätsmedizin der Johannes Gutenberg-Universität
Mainz
Untere Zahlbacher Str. 8
55131 Mainz
eMail: fellgiebel@psychiatrie.klinik.uni-mainz.de