Z Gastroenterol 2009; 47(8): 758-769
DOI: 10.1055/s-0028-1109520
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Matrix-Metalloproteinasen bei chronisch-entzündlichen Darmerkrankungen – von der Grundlagenforschung zur klinischen Bedeutung

Matrix Metalloproteinases in Inflammatory Bowel Disease – From Basic Research to Clinical SignificanceT. Rath1 , M. Roderfeld1 , J. Graf2 , E. Roeb1
  • 1Zentrum für Innere Medizin, Gastroenterologie, Justus-Liebig-Universität Gießen
  • 2Anästhesiologie und Intensivmedizin, Philipps-Universität Marburg
Further Information

Publication History

Manuskript eingetroffen: 28.3.2009

Manuskript akzeptiert: 14.5.2009

Publication Date:
06 August 2009 (online)

Zusammenfassung

Matrix-Metalloproteinasen (MMPs) sind zinkabhängige Endopeptidasen, die aufgrund ihres hohen proteolytischen Potenzials die wesentlichen Mediatoren des Umbaus der extrazellulären Matrix (ECM) darstellen. Neben der Fähigkeit, eine vollständige Degradation sämtlicher Metaboliten der ECM vorzunehmen, regulieren MMPs eine Vielzahl von Non-matrix-Substanzen, z. B. Chemokine, Zytokine oder Wachstumsfaktoren. Damit spielen MMPs eine entscheidende Rolle in zahlreichen physiologischen und pathologischen Prozessen wie Angiogenese, Wundheilung und Inflammation, einschließlich den mukosalen Entzündungsvorgängen bei chronisch entzündlichen Darmerkrankungen (CED). In jüngeren Studien konnte über die Mukosadestruktion hinaus eine Vielzahl weiterer Funktionen von MMPs in der Pathophysiologie des gesunden und inflammatorisch veränderten Darmes entschlüsselt werden. Der vorliegende Artikel gibt einen Überblick über die wesentlichen bei CED beteiligten MMPs, deren (patho)physiologische Relevanz sowie die klinischen Schlussfolgerungen, welche aus dem jeweiligen Expressions- und Regulationsverhalten der MMPs abgeleitet werden können.

Abstract

Matrix Metalloproteinases (MMPs) are a family of Zn2 + -dependent endopeptidases that are considered to be the most potent proteases in the turnover of the extracellular matrix (ECM). In addition to their capability for degradating virtually all protein components of the ECM, MMPs regulate a variety of non-matrix substrates such as chemokines, cytokines and growth factors. Therefore MMPs play a central role in a variety of physiological and pathological processes such as angiogenesis, wound healing and inflammatory response including mucosal inflammation associated with inflammatory bowel disease (IBD). Apart from mucosal destruction in IBD, recent studies have identified several new functions of MMPs for the pathophysiology of the healthy and inflamed intestine. This article summarises the main activities of MMPs in IBD with emphasis on their pathophysiological relevance and potential clinical implications based on the expression and regulation patterns of these enzymes.

Literatur

  • 1 Woessner J F. The family of matrix metalloproteinases.  Ann N Y Acad Sci. 1994;  732 11-21
  • 2 Overall C M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites.  Mol Biotechnol. 2002;  22 51-86
  • 3 Corry D B, Kiss Jr A, Song L Z. et al . Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines.  FASEB J. 2004;  18 995-997
  • 4 Okamoto R, Watanabe M. Cellular and molecular mechanisms of the epithelial repair in IBD.  Dig Dis Sci. 2005;  50 (Suppl 1) S34-S38
  • 5 Parks W C, Wilson C L, Lopez-Boado Y S. Matrix metalloproteinases as modulators of inflammation and innate immunity.  Nat Rev Immunol. 2004;  4 617-629
  • 6 Sternlicht M D, Werb Z. How matrix metalloproteinases regulate cell behavior.  Annu Rev Cell Dev Biol. 2001;  17 463-516
  • 7 Arihiro S, Ohtani H, Hiwatashi N. et al . Vascular smooth muscle cells and pericytes express MMP-1, MMP-9, TIMP-1 and type I procollagen in inflammatory bowel disease.  Histopathology. 2001;  39 50-59
  • 8 Bailey C J, Hembry R M, Alexander A. et al . Distribution of the matrix metalloproteinases stromelysin, gelatinases A and B, and collagenase in Crohn’s disease and normal intestine.  J Clin Pathol. 1994;  47 113-116
  • 9 Baugh M D, Perry M J, Hollander A P. et al . Matrix metalloproteinase levels are elevated in inflammatory bowel disease.  Gastroenterology. 1999;  117 814-822
  • 10 Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression.  Nat Rev Cancer. 2002;  2 161-174
  • 11 Pender S L, Tickle S P, Docherty A J. et al . A major role for matrix metalloproteinases in T cell injury in the gut.  J Immunol. 1997;  158 1582-1590
  • 12 Saarialho-Kere U K, Vaalamo M, Puolakkainen P. et al . Enhanced expression of matrilysin, collagenase, and stromelysin-1 in gastrointestinal ulcers.  Am J Pathol. 1996;  148 519-526
  • 13 Saarialho-Kere U K. Patterns of matrix metalloproteinase and TIMP expression in chronic ulcers.  Arch Dermatol Res. 1998;  290 (Suppl) S47-S54
  • 14 Stallmach A, Chan C C, Ecker K W. et al . Comparable expression of matrix metalloproteinases 1 and 2 in pouchitis and ulcerative colitis.  Gut. 2000;  47 415-422
  • 15 Vaalamo M, Karjalainen-Lindsberg M L, Puolakkainen P. et al . Distinct expression profiles of stromelysin-2 (MMP-10), collagenase-3 (MMP-13), macrophage metalloelastase (MMP-12), and tissue inhibitor of metalloproteinases-3 (TIMP-3) in intestinal ulcerations.  Am J Pathol. 1998;  152 1005-1014
  • 16 Lampe von B, Barthel B, Coupland S E. et al . Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease.  Gut. 2000;  47 63-73
  • 17 Castaneda F E, Walia B, Vijay-Kumar M. et al . Targeted deletion of metalloproteinase 9 attenuates experimental colitis in mice: central role of epithelial-derived MMP.  Gastroenterology. 2005;  129 1991-2008
  • 18 Di Sebastiano P, Mola F F, Artese di L. et al . Beneficial effects of Batimastat (BB-94), a matrix metalloproteinase inhibitor, in rat experimental colitis.  Digestion. 2001;  63 234-239
  • 19 Sykes A P, Bhogal R, Brampton C. et al . The effect of an inhibitor of matrix metalloproteinases on colonic inflammation in a trinitrobenzenesulphonic acid rat model of inflammatory bowel disease.  Aliment Pharmacol Ther. 1999;  13 1535-1542
  • 20 Roeb E, Matern S. Matrix metalloproteinases: Promoters of tumor invasion and metastasis – A review with focus on gastrointestinal tumors.  Z Gastroenterol. 2001;  39 807-813
  • 21 Murphy G, Willenbrock F. Tissue inhibitors of matrix metalloendopeptidases.  Methods Enzymol. 1995;  248 496-510
  • 22 Bode W, Fernandez-Catalan C, Tschesche H. et al . Structural properties of matrix metalloproteinases.  Cell Mol Life Sci. 1999;  55 639-652
  • 23 Puente X S, Pendas A M, Llano E. et al . Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma.  Cancer Res. 1996;  56 944-949
  • 24 Gururajan R, Grenet J, Lahti J M. et al . Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1 p36.3.  Genomics. 1998;  52 101-106
  • 25 Velasco G, Pendas A M, Fueyo A. et al . Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members.  J Biol Chem. 1999;  274 4570-4576
  • 26 Matrisian L M. Metalloproteinases and their inhibitors in matrix remodeling.  Trends Genet. 1990;  6 121-125
  • 27 Woessner J F, Gunja-Smith Jr Z. Role of metalloproteinases in human osteoarthritis.  J Rheumatol Suppl. 1991;  27 99-101
  • 28 Birkedal-Hansen H, Moore W G, Bodden M K. et al . Matrix metalloproteinases: a review.  Crit Rev Oral Biol Med. 1993;  4 197-250
  • 29 Li J, Brick P, O’Hare M C. et al . Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller.  Structure. 1995;  3 541-549
  • 30 Jenne D, Stanley K K. Nucleotide sequence and organization of the human S-protein gene: repeating peptide motifs in the ”pexin” family and a model for their evolution.  Biochemistry. 1987;  26 6735-6742
  • 31 Gomis-Ruth F X, Gohlke U, Betz M. et al . The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain.  J Mol Biol. 1996;  264 556-566
  • 32 Roeb E, Schleinkofer K, Kernebeck T. et al . The matrix metalloproteinase 9 (mmp-9) hemopexin domain is a novel gelatin binding domain and acts as an antagonist.  J Biol Chem. 2002;  277 50326-50332
  • 33 Coignac A B, Elson de G, Delneste Y. et al . Cloning of MMP-26. A novel matrilysin-like proteinase.  Eur J Biochem. 2000;  267 3323-3329
  • 34 Knauper V, Docherty A J, Smith B. et al . Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC, MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis.  FEBS Lett. 1997;  405 60-64
  • 35 O’Farrell T J, Pourmotabbed T. Identification of structural elements important for matrix metalloproteinase type V collagenolytic activity as revealed by chimeric enzymes. Role of fibronectin-like domain and active site of gelatinase B.  J Biol Chem. 2000;  275 27964-27972
  • 36 Redondo-Munoz J, Ugarte-Berzal E, Garcia-Marco J A. et al . Alpha4beta1 integrin and 190-kDa CD 44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells.  Blood. 2008;  112 169-178
  • 37 Benbow U, Brinckerhoff C E. The AP-1 site and MMP gene regulation: what is all the fuss about?.  Matrix Biol. 1997;  15 519-526
  • 38 Ries C, Petrides P E. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease.  Biol Chem Hoppe Seyler. 1995;  376 345-355
  • 39 Carmeliet P, Moons L, Lijnen R. et al . Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation.  Nat Genet. 1997;  17 439-444
  • 40 Duncan M E, Richardson J P, Murray G I. et al . Human matrix metalloproteinase-9: activation by limited trypsin treatment and generation of monoclonal antibodies specific for the activated form.  Eur J Biochem. 1998;  258 37-43
  • 41 Lijnen H R. Matrix metalloproteinases and cellular fibrinolytic activity.  Biochemistry. 2002;  67 92-98
  • 42 Moilanen M, Sorsa T, Stenman M. et al . Tumor-associated trypsinogen-2 (trypsinogen-2) activates procollagenases (MMP-1, -8, -3) and stromelysin-1 (MMP-3) and degrades type I collagen.  Biochemistry. 2003;  42 5414-5420
  • 43 Okada Y, Harris E D, Nagase Jr H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate.  Biochem J. 1988;  254 731-741
  • 44 Ramos-DeSimone N, Hahn-Dantona E, Sipley J. et al . Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion.  J Biol Chem. 1999;  274 13 066-13 076
  • 45 Bernardo M M, Fridman R. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT 1 (membrane type 1)-MMP.  Biochem J. 2003;  374 739-745
  • 46 Fridman R, Toth M, Pena D. et al . Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2).  Cancer Res. 1995;  55 2548-2555
  • 47 Imai K, Yokohama Y, Nakanishi I. et al . Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties.  J Biol Chem. 1995;  270 6691-6697
  • 48 Murphy G, Knauper V. Relating matrix metalloproteinase structure to function: why the ”hemopexin” domain?.  Matrix Biol. 1997;  15 511-518
  • 49 Ogata Y, Enghild J J, Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9.  J Biol Chem. 1992;  267 3581-3584
  • 50 Opdenakker G, Van den Steen P E, Dubois B. et al . Gelatinase B functions as regulator and effector in leukocyte biology.  J Leukoc Biol. 2001;  69 851-859
  • 51 Pirila E, Ramamurthy N S, Sorsa T. et al . Gelatinase A (MMP-2), collagenase-2 (MMP-8), and laminin-5 gamma2-chain expression in murine inflammatory bowel disease (ulcerative colitis).  Dig Dis Sci. 2003;  48 93-98
  • 52 Sorsa T, Uitto V J, Suomalainen K. et al . Comparison of interstitial collagenases from human gingiva, sulcular fluid and polymorphonuclear leukocytes.  J Periodontal Res. 1988;  23 386-393
  • 53 Knauper V, Lopez-Otin C, Smith B. et al . Biochemical characterization of human collagenase-3.  J Biol Chem. 1996;  271 1544-1550
  • 54 Daum S, Bauer U, Foss H D. et al . Increased expression of mRNA for matrix metalloproteinases-1 and -3 and tissue inhibitor of metalloproteinases-1 in intestinal biopsy specimens from patients with coeliac disease.  Gut. 1999;  44 17-25
  • 55 Otani Y, Sakurai Y, Kameyama K. et al . Matrix metalloproteinase gene expression in chronic gastric ulcer: a potential role of eosinophils in perforation.  J Clin Gastroenterol. 1997;  25 (Suppl 1) S101-S104
  • 56 Wang H, Keiser J A. Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1.  Circ Res. 1998;  83 832-840
  • 57 Vaalamo M, Weckroth M, Puolakkainen P. et al . Patterns of matrix metalloproteinase and TIMP-1 expression in chronic and normally healing human cutaneous wounds.  Br J Dermatol. 1996;  135 52-59
  • 58 Opdenakker G. New insights in the regulation of leukocytosis and the role played by leukocytes in septic shock.  Verh K Acad Geneeskd Belg. 2001;  63 531-538
  • 59 Van Lint P, Wielockx B, Puimege L. et al . Resistance of collagenase-2 (matrix metalloproteinase-8)-deficient mice to TNF-induced lethal hepatitis.  J Immunol. 2005;  175 7642-7649
  • 60 Hanemaaijer R, Sorsa T, Konttinen Y T. et al . Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells. Regulation by tumor necrosis factor-alpha and doxycycline.  J Biol Chem. 1997;  272 31504-31509
  • 61 Bode W, Reinemer P, Huber R. et al . The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity.  EMBO J. 1994;  13 1263-1269
  • 62 Bode W. A helping hand for collagenases: the haemopexin-like domain.  Structure. 1995;  3 527-530
  • 63 Lovejoy B, Welch A R, Carr S. et al . Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors.  Nat Struct Biol. 1999;  6 217-221
  • 64 Rath T, Roderfeld M, Graf J. et al . Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: a precancerous potential?.  Inflamm Bowel Dis. 2006;  12 1025-1035
  • 65 Roeb E, Arndt M, Jansen B. et al . Simultaneous determination of matrix metalloproteinase (MMP)-7, MMP-1, -3, and -13 gene expression by multiplex PCR in colorectal carcinomas.  Int J Colorectal Dis. 2004;  19 518-524
  • 66 Airola K, Karonen T, Vaalamo M. et al . Expression of collagenases-1 and -3 and their inhibitors TIMP-1 and -3 correlates with the level of invasion in malignant melanomas.  Br J Cancer. 1999;  80 733-743
  • 67 Heppner K J, Matrisian L M, Jensen R A. et al . Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response.  Am J Pathol. 1996;  149 273-282
  • 68 Leeman M F, McKay J A, Murray G I. Matrix metalloproteinase 13 activity is associated with poor prognosis in colorectal cancer.  J Clin Pathol. 2002;  55 758-762
  • 69 Ilvesaro J M, Merrell M A, Swain T M. et al . Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro.  Prostate. 2007;  67 774-781
  • 70 Merrell M A, Ilvesaro J M, Lehtonen N. et al . Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity.  Mol Cancer Res. 2006;  4 437-447
  • 71 Cawston T E. Metalloproteinase inhibitors and the prevention of connective tissue breakdown.  Pharmacol Ther. 1996;  70 163-182
  • 72 Banyai L, Tordai H, Patthty L. Structure and domain-domain interactions of the gelatin binding site of human 72-kilodalton type IV collagenase (gelatinase A, matrix metalloproteinase 2).  J Biol Chem. 1996;  271 12003-12008
  • 73 Garg P, Rojas M, Ravi A. et al . Selective ablation of matrix metalloproteinase-2 exacerbates experimental colitis: contrasting role of gelatinases in the pathogenesis of colitis.  J Immunol. 2006;  177 4103-4112
  • 74 Cao J, Drews M, Lee H M. et al . The propeptide domain of membrane type 1 matrix metalloproteinase is required for binding of tissue inhibitor of metalloproteinases and for activation of pro-gelatinase A.  J Biol Chem. 1998;  273 34745-34752
  • 75 Okada A, Tomasetto C, Lutz Y. et al . Expression of matrix metalloproteinases during rat skin wound healing: evidence that membrane type-1 matrix metalloproteinase is a stromal activator of pro-gelatinase A.  J Cell Biol. 1997;  137 67-77
  • 76 Strongin A Y, Collier I, Bannikov G. et al . Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease.  J Biol Chem. 1995;  270 5331-5338
  • 77 Nagase H. Activation mechanisms of matrix metalloproteinases.  Biol Chem. 1997;  378 151-160
  • 78 Basset P, Okada A, Chenard M P. et al . Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic implications.  Matrix Biol. 1997;  15 535-541
  • 79 Makela M, Larjava H, Pirila E. et al . Matrix metalloproteinase 2 (gelatinase A) is related to migration of keratinocytes.  Exp Cell Res. 1999;  251 67-78
  • 80 Turck J, Pollock A S, Lee L K. et al . Matrix metalloproteinase 2 (gelatinase A) regulates glomerular mesangial cell proliferation and differentiation.  J Biol Chem. 1996;  271 15074-15083
  • 81 Xue M, Le N T, Jackson C J. Targeting matrix metalloproteases to improve cutaneous wound healing.  Expert Opin Ther Targets. 2006;  10 143-155
  • 82 Lechapt-Zalcman E, Pruliere-Escabasse V, Advenier D. et al . Transforming growth factor-beta1 increases airway wound repair via MMP-2 upregulation: a new pathway for epithelial wound repair?.  Am J Physiol Lung Cell Mol Physiol. 2006;  290 L1277-L1282
  • 83 Kirkegaard T, Hansen A, Bruun E. et al . Expression and localisation of matrix metalloproteinases and their natural inhibitors in fistulae of patients with Crohn’s disease.  Gut. 2004;  53 701-709
  • 84 Kaur K, Zhu K, Whittemore M S. et al . Identification of the active site of gelatinase B as the structural element sufficient for converting a protein to a metalloprotease.  Biochemistry. 2002;  41 4789-4797
  • 85 Atkinson J J, Senior R M. Matrix metalloproteinase-9 in lung remodeling.  Am J Respir Cell Mol Biol. 2003;  28 12-24
  • 86 Opdenakker G, Van den Steen P E, Van Damme J. Gelatinase B: a tuner and amplifier of immune functions.  Trends Immunol. 2001;  22 571-579
  • 87 Roeb E, Dietrich C G, Winograd R. et al . Activity and cellular origin of gelatinases in patients with colon and rectal carcinoma differential activity of matrix metalloproteinase-9.  Cancer. 2001;  92 2680-2691
  • 88 Liabakk N B, Talbot I, Smith R A. et al . Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer.  Cancer Res. 1996;  56 190-196
  • 89 Baugh M D, Evans G S, Hollander A P. et al . Expression of matrix metalloproteases in inflammatory bowel disease.  Ann N Y Acad Sci. 1998;  859 249-253
  • 90 Tarlton J F, Whiting C V, Tunmore D. et al . The role of up-regulated serine proteases and matrix metalloproteinases in the pathogenesis of a murine model of colitis.  Am J Pathol. 2000;  157 1927-1935
  • 91 Manfredi M A, Zurakowski D, Rufo P A. et al . Increased incidence of urinary matrix metalloproteinases as predictors of disease in pediatric patients with inflammatory bowel disease.  Inflamm Bowel Dis. 2008;  14 1091-1096
  • 92 Medina C, Videla S, Radomski A. et al . Increased activity and expression of matrix metalloproteinase-9 in a rat model of distal colitis.  Am J Physiol Gastrointest Liver Physiol. 2003;  284 G116-G122
  • 93 Medina C, Santana A, Paz M C. et al . Matrix metalloproteinase-9 modulates intestinal injury in rats with transmural colitis.  J Leukoc Biol. 2006;  79 954-962
  • 94 Fini M E, Parks W C, Rinehart W B. et al . Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury.  Am J Pathol. 1996;  149 1287-1302
  • 95 Mohan R, Chintala S K, Jung J C. et al . Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration.  J Biol Chem. 2002;  277 2065-2072
  • 96 Alexander J S, Elrod J W. Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation.  J Anat. 2002;  200 561-574
  • 97 Behzadian M A, Wang X L, Windsor L J. et al . TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function.  Invest Ophthalmol Vis Sci. 2001;  42 853-859
  • 98 Scott K A, Arnott C H, Robinson S C. et al . TNF-alpha regulates epithelial expression of MMP-9 and integrin alphavbeta6 during tumour promotion. A role for TNF-alpha in keratinocyte migration?.  Oncogene. 2004;  23 6954-6966
  • 99 Van den Steen P E, Proost P, Wuyts A. et al . Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact.  Blood. 2000;  96 2673-2681
  • 100 Matsubara M, Zieske J D, Fini M E. Mechanism of basement membrane dissolution preceding corneal ulceration.  Invest Ophthalmol Vis Sci. 1991;  32 3221-3237
  • 101 Stetler-Stevenson W G, Krutzsch H C, Wacher M P. et al . The activation of human type IV collagenase proenzyme. Sequence identification of the major conversion product following organomercurial activation.  J Biol Chem. 1989;  264 1353-1356
  • 102 Breathnach R, Matrisian L M, Gesnel M C. et al . Sequences coding for part of oncogene-induced transin are highly conserved in a related rat gene.  Nucleic Acids Res. 1987;  15 1139-1151
  • 103 Fu L, Ishizuya-Oka A, Buchholz D R. et al . A causative role of stromelysin-3 in extracellular matrix remodeling and epithelial apoptosis during intestinal metamorphosis in Xenopus laevis.  J Biol Chem. 2005;  280 27856-27865
  • 104 Pendas A M, Knauper V, Puente X S. et al . Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution.  J Biol Chem. 1997;  272 4281-4286
  • 105 Saarialho-Kere U K, Pentland A P, Birkedal-Hansen H. et al . Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds.  J Clin Invest. 1994;  94 79-88
  • 106 Li C K, Pender S L, Pickard K M. et al . Impaired immunity to intestinal bacterial infection in stromelysin-1 (matrix metalloproteinase-3)-deficient mice.  J Immunol. 2004;  173 5171-5179
  • 107 Gordon J N, Pickard K M, Di Sabatino A. et al . Matrix metalloproteinase-3 production by gut IgG plasma cells in chronic inflammatory bowel disease.  Inflamm Bowel Dis. 2008;  14 195-203
  • 108 Pender S L, Croucher P J, Mascheretti S. et al . Transmission disequilibrium test of stromelysin-1 gene variation in relation to Crohn’s disease.  J Med Genet. 2004;  41 e112
  • 109 Welgus H G. Stromelysin: structure and function.  Agents Actions Suppl. 1991;  35 61-67
  • 110 Zhang K, Kramer R H. Laminin 5 deposition promotes keratinocyte motility.  Exp Cell Res. 1996;  227 309-322
  • 111 Airola K, Reunala T, Salo S. et al . Urokinase plasminogen activator is expressed by basal keratinocytes before interstitial collagenase, stromelysin-1, and laminin-5 in experimentally induced dermatitis herpetiformis lesions.  J Invest Dermatol. 1997;  108 7-11
  • 112 Madlener M, Mauch C, Conca W. et al . Regulation of the expression of stromelysin-2 by growth factors in keratinocytes: implications for normal and impaired wound healing.  Biochem J. 1996;  320 (Pt 2) 659-664
  • 113 Newell K J, Witty J P, Rodgers W H. et al . Expression and localization of matrix-degrading metalloproteinases during colorectal tumorigenesis.  Mol Carcinog. 1994;  10 199-206
  • 114 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry.  Circ Res. 2003;  92 827-839
  • 115 Wilson C L, Matrisian L M. Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions.  Int J Biochem Cell Biol. 1996;  28 123-136
  • 116 Miyazaki K, Hattori Y, Umenishi F. et al . Purification and characterization of extracellular matrix-degrading metalloproteinase, matrin (pump-1), secreted from human rectal carcinoma cell line.  Cancer Res. 1990;  50 7758-7764
  • 117 Wielockx B, Libert C, Wilson C. Matrilysin (matrix metalloproteinase-7): a new promising drug target in cancer and inflammation?.  Cytokine Growth Factor Rev. 2004;  15 111-115
  • 118 Salmela M T, Pender S L, Karjalainen-Lindsberg M L. et al . Collagenase-1 (MMP-1), matrilysin-1 (MMP-7), and stromelysin-2 (MMP-10) are expressed by migrating enterocytes during intestinal wound healing.  Scand J Gastroenterol. 2004;  39 1095-1104
  • 119 Matsuno K, Adachi Y, Yamamoto H. et al . The expression of matrix metalloproteinase matrilysin indicates the degree of inflammation in ulcerative colitis.  J Gastroenterol. 2003;  38 348-354
  • 120 Parks W C. Matrix metalloproteinases in repair.  Wound Repair Regen. 1999;  7 423-432
  • 121 Wilson C L, Ouellette A J, Satchell D P. et al . Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense.  Science. 1999;  286 113-117
  • 122 Adachi Y, Yamamoto H, Itoh F. et al . Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers.  Gut. 1999;  45 252-258
  • 123 Masaki T, Matsuoka H, Sugiyama M. et al . Matrilysin (MMP-7) as a significant determinant of malignant potential of early invasive colorectal carcinomas.  Br J Cancer. 2001;  84 1317-1321
  • 124 Newell K J, Matrisian L M, Driman D K. Matrilysin (matrix metalloproteinase-7) expression in ulcerative colitis-related tumorigenesis.  Mol Carcinog. 2002;  34 59-63
  • 125 Shapiro S D, Kobayashi D K, Ley T J. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages.  J Biol Chem. 1993;  268 23824-23829
  • 126 Shipley J M, Wesselschmidt R L, Kobayashi D K. et al . Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice.  Proc Natl Acad Sci U S A. 1996;  93 3942-3946
  • 127 Benyon R C, Arthur M J. Extracellular matrix degradation and the role of hepatic stellate cells.  Semin Liver Dis. 2001;  21 373-384
  • 128 Udayakumar T S, Chen M L, Bair E L. et al . Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves human laminin-5 beta3 chain and induces cell migration.  Cancer Res. 2003;  63 2292-2299
  • 129 Ravanti L, Kahari V M. Matrix metalloproteinases in wound repair (review).  Int J Mol Med. 2000;  6 391-407
  • 130 Malhotra S, Newman E, Eisenberg D. et al . Increased membrane type 1 matrix metalloproteinase expression from adenoma to colon cancer: a possible mechanism of neoplastic progression.  Dis Colon Rectum. 2002;  45 537-543
  • 131 Gomez D E, Alonso D F, Yoshiji H. et al . Tissue inhibitors of metalloproteinases: structure, regulation and biological functions.  Eur J Cell Biol. 1997;  74 111-122
  • 132 Kasahara A, Hayashi N, Mochizuki K. et al . Circulating matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 as serum markers of fibrosis in patients with chronic hepatitis C. Relationship to interferon response.  J Hepatol. 1997;  26 574-583
  • 133 O’Connell J P, Willenbrock F, Docherty A J. et al . Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B.  J Biol Chem. 1994;  269 14967-14973
  • 134 Roeb E, Graeve L, Hoffmann R. et al . Regulation of tissue inhibitor of metalloproteinases-1 gene expression by cytokines and dexamethasone in rat hepatocyte primary cultures.  Hepatology. 1993;  18 1437-1442
  • 135 Gatsios P, Haubeck H D, LE. et al . Oncostatin M differentially regulates tissue inhibitors of metalloproteinases TIMP-1 and TIMP-3 gene expression in human synovial lining cells.  Eur J Biochem. 1996;  241 56-63
  • 136 Medina C, Radomski M W. Role of matrix metalloproteinases in intestinal inflammation.  J Pharmacol Exp Ther. 2006;  318 933-938
  • 137 Louis E, Ribbens C, Godon A. et al . Increased production of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 by inflamed mucosa in inflammatory bowel disease.  Clin Exp Immunol. 2000;  120 241-246
  • 138 Naito Y, Yoshikawa T. Role of matrix metalloproteinases in inflammatory bowel disease.  Mol Aspects Med. 2005;  26 379-390
  • 139 Meijer M J, Mieremet-Ooms M A, Sier C F. et al . Matrix metalloproteinases and their tissue inhibitors as prognostic indicators for diagnostic and surgical recurrence in Crohn’s disease.  Inflamm Bowel Dis. 2009;  15 84-92
  • 140 McKaig B C, McWilliams D, Watson S A. et al . Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibroblasts in inflammatory bowel disease.  Am J Pathol. 2003;  162 1355-1360
  • 141 Di Sabatino A, Pender S L, Jackson C L. et al . Functional modulation of Crohn’s disease myofibroblasts by anti-tumor necrosis factor antibodies.  Gastroenterology. 2007;  133 137-149
  • 142 Hemmann S, Graf J, Roderfeld M. et al . Expression of MMPs and TIMPs in liver fibrosis – a systematic review with special emphasis on anti-fibrotic strategies.  J Hepatol. 2007;  46 955-975
  • 143 De Lano W L. The PyMOL User’s Manual. San Carlos, CA, USA; 2002
  • 144 Ravi A, Garg P, Sitaraman S V. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane?.  Inflamm Bowel Dis. 2007;  13 97-107
  • 145 Baricos W H, Murphy G, Zhou Y W. et al . Degradation of glomerular basement membrane by purified mammalian metalloproteinases.  Biochem J. 1988;  254 609-612
  • 146 Murphy G, Cockett M I, Ward R V. et al . Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP).  Biochem J. 1991;  277 (Pt 1) 277-279
  • 147 Nguyen Q, Murphy G, Roughley P J. et al . Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for the involvement of stromelysin in the generation of link protein heterogeneity in situ.  Biochem J. 1989;  259 61-67
  • 148 Okada Y, Nakanishi I. Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 (‘gelatinase’) by human neutrophil elastase and cathepsin G.  FEBS Lett. 1989;  249 353-356
  • 149 Chandler S, Cossins J, Lury J. et al . Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein.  Biochem Biophys Res Commun. 1996;  228 421-429
  • 150 Gronski Jr T J, Martin R L, Kobayashi D K. et al . Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase.  J Biol Chem. 1997;  272 12189-12194

Prof. Dr. Elke Roeb

Zentrum für Innere Medizin, Gastroenterologie, Justus-Liebig-Universität

Paul-Meimberg-Str. 5

35385 Gießen

Phone: ++ 49/6 41/9 94 23 38

Fax: ++ 49/6 41/9 94 23 39

Email: elke.roeb@innere.med.uni-giessen.de

    >