Subscribe to RSS
DOI: 10.1055/s-0028-1109547
© Georg Thieme Verlag KG Stuttgart · New York
Der Einfluss von Bortezomib auf den Knochenstoffwechsel beim multiplen Myelom
The Effect of Bortezomib on Bone Metabolism in Multiple MyelomaPublication History
Publication Date:
19 October 2009 (online)

Zusammenfassung
Die erhöhte Knochenresorption ist ein Hauptmerkmal des multiplen Myeloms und kann die Lebensqualität der Patienten maßgeblich beeinträchtigen. Bei der überwiegenden Mehrzahl der Myelompatienten sind Osteolysen festzustellen, die Schmerzen auslösen und ein erhöhtes Frakturrisiko verursachen. Die Knochendestruktion entsteht beim multiplen Myelom durch ein gestörtes Gleichgewicht der Aktivität der knochenaufbauenden Osteoblasten und der knochenabbauenden Osteoklasten. Die zellulären Interaktionen sowie Dysregulation von Zytokinen im Knochenmarkmikroenvironment sind an der Knochendestruktion beteiligt. Die Behandlung mit Bisphosphonaten hemmt zwar die osteoklasteninduzierte Knochenresorption, ist aber nicht in der Lage, die beim multiplen Myelom beobachtete Hemmung der Differenzierung der mesenchymalen Stammzellen zu Osteoblasten auszugleichen. Bortezomib ist die wirksamste Einzelsubstanz in der Therapie des multiplen Myeloms. Präklinische Untersuchungen zeigen, dass der Proteasominhibitor Bortezomib darüber hinaus der myelominduzierten Knochendestruktion entgegenwirken kann. Bortezomib hemmt einerseits die Osteoklastenaktivität und fördert andererseits die Osteoblastenfunktion und weist somit Eigenschaften auf, die für die Therapie der Knochenbeteiligung beim multiplen Myelom ideal erscheinen. Bortezomib könnte somit nicht nur in der Behandlung gegen die Tumorzellen, sondern auch in der Behandlung der Knochendestruktion eine wesentliche Rolle spielen. Klinische Studien sind jedoch notwendig, um diese Effekte hinsichtlich ihrer klinischen Relevanz zu untersuchen. Internationale prospektive klinische Studien wurden begonnen, um dies in einem randomisierten Studiendesign zu untersuchen.
Abstract
Increased bone resorption is one of the main characteristics of multiple myeloma and can considerably impair the quality of life of the patients. The vast majority of myeloma patients have lytic bone lesions which lead to pain and an increased risk of fractures. Bone destruction in multiple myeloma patients is caused by an imbalance of the activity of bone-building osteoblasts and bone-resorbing osteoclasts. Cellular interactions, as well as dysregulation of cytokines in the bone marrow microenvironment are involved in bone destruction. Treatment with bisphosphonates inhibits osteoclast-induced bone resorption, but it cannot compensate for the inhibited differentiation of mesenchymal stem cells into osteoblasts observed in multiple myeloma patients. Bortezomib is the most efficient single substance for the treatment of multiple myeloma. Preclinical tests show that the proteasome inhibitor Bortezomib can furthermore counteract the myeloma-induced bone destruction. On the one hand, Bortezomib inhibits osteoclast activity and, on the other hand, promotes osteoblast function and thus has properties that seem to be ideal for the therapy of bone disease in multiple myeloma patients. Bortezomib might play an important part not only in the treatment against the tumour cells, but also in the treatment of bone destruction. However, clinical studies have to be carried out in order to examine these effects with a view to their clinical relevance. International prospective randomized clinical trials have already been started.
Schlüsselwörter
Bortezomib - Knochen - multiples Myelom - Osteoblasten - Osteoklasten - Proteasom
Key words
Bortezomib - bones - multiple myeloma - osteoblasts - osteoclasts - proteasome
Literatur
- 1
Sezer O.
Myeloma Bone Disease: Recent Advances in Biology, Diagnosis, and Treatment.
Oncologist.
2009;
14 (3)
276-283
MissingFormLabel
- 2 Sezer O. Multiples Myelom und verwandte Plasmazellerkrankungen. Therapie-Handbuch. Elsevier-Verlag 2008
MissingFormLabel
- 3
Richardson P G, Sonneveld P, Schuster M W. et al .
Bortezomib or high-dose dexamethasone for relapsed multiple myeloma.
N Engl J Med.
2005;
352 (24)
2487-2498
MissingFormLabel
- 4
San Miguel J F, Schlag R, Khuageva N K. et al .
Bortezomib plus Melphalan and Prednisone for Initial Treatment of Multiple Myeloma.
N Engl J Med.
2008;
359 (9)
906-917
MissingFormLabel
- 5
Jakob C, Egerer K, Liebisch P. et al .
Circulating proteasome levels are an independent prognostic factor for survival in
multiple myeloma.
Blood.
2007;
109 (5)
2100-2105
MissingFormLabel
- 6
Garrett I R, Chen D, Gutierrez G. et al .
Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo
and in vitro.
The Journal of Clinical Investigation.
2003;
111
1771-1782
MissingFormLabel
- 7
Zavrski I, Krebbel H, Wildemann B. et al .
Proteasome inhibitors abrogate osteoclast differentiation and osteoclast function.
Biochem Biophys Res Commun.
2005;
333 (1)
200-205
MissingFormLabel
- 8
Coleman R E.
Skeletal complications of malignancy.
Cancer.
1997;
80 (Suppl 8)
1588-1594
MissingFormLabel
- 9 Sezer O. Bisphosphonate beim Multiplen Myelom. Supportive Therapie in der Onkologie. Zuckschwerdt Verlag 2008
MissingFormLabel
- 10
Cocks K, Cohen D, Wisloff F. et al .
An international field study of the reliability and validity of a disease-specific
questionnaire module (the QLQ-MY20) in assessing the quality of life of patients with
multiple myeloma.
Eur J Cancer.
2007;
43 (11)
1670-1678
MissingFormLabel
- 11
Jakob C, Sterz J, Liebisch P. et al .
Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves
prognostic information of the International Staging System in newly diagnosed symptomatic
multiple myeloma.
Leukemia.
2008;
22 (9)
1767-1772
MissingFormLabel
- 12
Sezer O, Heider U, Zavrski I. et al .
RANK ligand and osteoprotegerin in myeloma bone disease.
Blood.
2003;
101 (6)
2094-2098
MissingFormLabel
- 13
Heider U, Fleissner C, Zavrski I. et al .
Bone markers in multiple myeloma.
Eur J Cancer.
2006;
42 (11)
1544-1553
MissingFormLabel
- 14
Lentzsch S, Ehrlich L A, Roodman G D.
Pathophysiology of multiple myeloma bone disease.
Hematol Oncol Clin North Am.
2007;
21 (6)
1035-49, viii
MissingFormLabel
- 15
Hideshima T, Mitsiades C S, Tonon G. et al .
Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic
targets.
Nature Reviews Cancer.
2007;
7
585-598
MissingFormLabel
- 16
Heider U, Langelotz C, Jakob C. et al .
Expression of receptor activator of nuclear factor kappaB ligand on bone marrow plasma
cells correlates with osteolytic bone disease in patients with multiple myeloma.
Clin Cancer Res.
2003;
9 (4)
1436-1440
MissingFormLabel
- 17
Heider U, Hofbauer L C, Zavrski I. et al .
Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease.
Biochem Biophys Res Commun.
2005;
338 (2)
687-693
MissingFormLabel
- 18
Yaccoby S, Pearse R N, Johnson C L. et al .
Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis
and is dependent on osteoclast activity.
Br J Haematol.
2002;
116 (2)
278-290
MissingFormLabel
- 19
Hecht M, Metzler von I, Sack K. et al .
Interactions of myeloma cells with osteoclasts promote tumour expansion and bone degradation
through activation of a complex signalling network and upregulation of cathepsin K,
matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA).
Exp Cell Res.
2008;
314 (5)
1082-1093
MissingFormLabel
- 20
Bataille R, Chappard D, Marcelli C. et al .
Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the
pathogenesis of human multiple myeloma.
J Clin Invest.
1991;
88 (1)
62-66
MissingFormLabel
- 21
Hecht M, Heider U, Kaiser M. et al .
Osteoblasts promote migration and invasion of myeloma cells through upregulation of
matrix metalloproteinases, urokinase plasminogen activator, hepatocyte growth factor
and activation of p38 MAPK.
Br J Haematol.
2007;
138 (4)
446-458
MissingFormLabel
- 22
Tian E, Zhan F, Walker R. et al .
The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions
in multiple myeloma.
N Engl J Med.
2003;
349 (26)
2483-2494
MissingFormLabel
- 23
Kaiser M, Mieth M, Liebisch P. et al .
Serum concentrations of DKK-1 correlate with the extent of bone disease in patients
with multiple myeloma.
Eur J Haematol.
2008;
80 (6)
490-494
MissingFormLabel
- 24
Yaccoby S, Ling W, Zhan F. et al .
Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple
myeloma growth in vivo.
Blood.
2007;
109 (5)
2106-2111
MissingFormLabel
- 25
Giuliani N, Rizzoli V, Roodman G D.
Multiple myeloma bone disease: pathophysiology of osteoblast inhibition.
Blood.
2006;
108
3992-3996
MissingFormLabel
- 26
Moulopoulos L A, Dimopoulos M A, Smith T L. et al .
Prognostic significance of magnetic resonance imaging in patients with asymptomatic
multiple myeloma.
J Clin Oncol.
1995;
13 (1)
251-256
MissingFormLabel
- 27
Walker R, Barlogie B, Haessler J. et al .
Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications.
J Clin Oncol.
2007;
25 (9)
1121-1128
MissingFormLabel
- 28
Jakob C, Zavrski I, Heider U. et al .
Bone resorption parameters [carboxy-terminal telopeptide of type-I collagen (ICTP),
amino-terminal collagen type-I telopeptide (NTx), and deoxypyridinoline (Dpd)] in
MGUS and multiple myeloma.
Eur J Haematol.
2002;
69 (1)
37-42
MissingFormLabel
- 29
Yeh H S, Berenson J R.
Treatment for myeloma bone disease.
Clin Cancer Res.
2006;
12 (20 Pt 2)
6279 s-6284 s
MissingFormLabel
- 30
Coleman R E, Major P, Lipton A. et al .
Predictive value of bone resorption and formation markers in cancer patients with
bone metastases receiving the bisphosphonate zoledronic acid.
J Clin Oncol.
2005;
23 (22)
4925-4935
MissingFormLabel
- 31
Bamias A, Kastritis E, Bamia C. et al .
Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence
and risk factors.
J Clin Oncol.
2005;
23 (34)
8580-8587
MissingFormLabel
- 32
Ripamonti C I, Maniezzo M, Campa T. et al .
Decreased occurrence of osteonecrosis of the jaw after implementation of dental preventive
measures in solid tumour patients with bone metastases treated with bisphosphonates.
The experience of the National Cancer Institute of Milan.
Ann Oncol.
2009;
20 (1)
137-145
MissingFormLabel
- 33
Heider U, Kaiser M, Muller C. et al .
Bortezomib increases osteoblast activity in myeloma patients irrespective of response
to treatment.
Eur J Haematol.
2006;
77 (3)
233-238
MissingFormLabel
- 34
Giuliani N, Morandi F, Tagliaferri S. et al .
The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and
in vivo in multiple myeloma patients.
Blood.
2007;
110 (1)
334-338
MissingFormLabel
- 35
Terpos E, Dimopoulos M A, Sezer O.
The effect of novel anti-myeloma agents on bone metabolism of patients with multiple
myeloma.
Leukemia.
2007;
21 (9)
1875-1884
MissingFormLabel
- 36
Terpos E, Sezer O, Croucher P. et al .
Myeloma bone disease and proteasome inhibition therapies.
Blood.
2007;
110 (4)
1098-1104
MissingFormLabel
- 37
Metzler von I, Krebbel H, Hecht M. et al .
Bortezomib inhibits human osteoclastogenesis.
Leukemia.
2007;
21 (9)
2025-2034
MissingFormLabel
- 38
Boissy P, Andersen T L, Lund T. et al .
Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive
activity in clinically relevant conditions.
Leuk Res.
2008;
32 (11)
1661-1668
MissingFormLabel
- 39
Roodman G D.
Bone building with bortezomib.
J Clin Invest.
2008;
118 (2)
462-464
MissingFormLabel
- 40
Uy G L, Trivedi R, Peles S. et al .
Bortezomib inhibits osteoclast activity in patients with multiple myeloma.
Clin Lymphoma Myeloma.
2007;
7 (9)
587-589
MissingFormLabel
- 41
Terpos E, Heath D J, Rahemtulla A. et al .
Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB
ligand concentrations and normalises indices of bone remodelling in patients with
relapsed multiple myeloma.
Br J Haematol.
2006;
135 (5)
688-692
MissingFormLabel
- 42 Terpos E, Delimpasi S, Anargyrou K. et al .The Combination of Bortezomib, Doxorubicin, and Dexamethasone (PAD) Is an Effective
Regimen for High Risk, Newly Diagnosed, Patients with Multiple Myeloma, Reduces Bone
Resorption and Normalizes Angiopoietin-1 to Angiopoietin-2 Ratio. ASH Annual Meeting Abstracts 110[11] 16.11.2007: 3596.
MissingFormLabel
- 43
Terpos E, Kastritis E, Roussou M. et al .
The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide
is an effective regimen for relapsed/refractory myeloma and is associated with improvement
of abnormal bone metabolism and angiogenesis.
Leukemia.
2008;
22 (12)
2247-2256
MissingFormLabel
- 44
Oyajobi B O, Garrett I R, Gupta A. et al .
Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications
for myeloma bone disease.
Br J Haematol.
2007;
139 (3)
434-438
MissingFormLabel
- 45
Mukherjee S, Raje N, Schoonmaker J A. et al .
Pharmacologic targeting of a stem/progenitor population in vivo is associated with
enhanced bone regeneration in mice.
J Clin Invest.
2008;
118 (2)
491-504
MissingFormLabel
- 46
Yaccoby S, Wezeman M J, Zangari M. et al .
Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel
culture systems and a myelomatous mouse model.
Haematologica.
2006;
91 (2)
192-199
MissingFormLabel
- 47
Pennisi A, Li X, Ling W. et al .
The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone
formation in myelomatous and nonmyelomatous bones in vivo.
Am J Hematol.
2009;
84 (1)
6-14
MissingFormLabel
- 48
Weinstein R S, Jilka R L, Parfitt A M. et al .
Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes
by glucocorticoids. Potential mechanisms of their deleterious effects on bone.
J Clin Invest.
1998;
102 (2)
274-282
MissingFormLabel
- 49
Ohnaka K, Tanabe M, Kawate H. et al .
Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts.
Biochem Biophys Res Commun.
2005;
329 (1)
177-181
MissingFormLabel
- 50 Soe K, Andersen T L, Kupisiewicz K. et al .Bortezomib Protects Osteoblasts from Glucocorticoid-Induced Damage, and Enhances Glucocorticoid-Induced
Toxicity Against Osteoclasts and Myeloma Cells. ASH Annual Meeting Abstracts 11 0[11] Ref Type: Abstract 16.11.2007: 3523
MissingFormLabel
- 51
Shimazaki C, Uchida R, Nakano S. et al .
High serum bone-specific alkaline phosphatase level after bortezomib-combined therapy
in refractory multiple myeloma: possible role of bortezomib on osteoblast differentiation.
Leukemia.
2005;
19 (6)
1102-1103
MissingFormLabel
- 52
Zangari M, Esseltine D, Lee C K. et al .
Response to bortezomib is associated to osteoblastic activation in patients with multiple
myeloma.
Br J Haematol.
2005;
131 (1)
71-73
MissingFormLabel
- 53
Zangari M, Esseltine D, Cavallo F. et al .
Predictive value of alkaline phosphatase for response and time to progression in bortezomib-treated
multiple myeloma patients.
Am J Hematol.
2007;
82 (9)
831-833
MissingFormLabel
- 54
Ozaki S, Tanaka O, Fujii S. et al .
Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive
patients with multiple myeloma.
Int J Hematol.
2007;
86 (2)
180-185
MissingFormLabel
- 55 Zangari M, Cavallo F, Suva L. et al .Prospective Evaluation of the Bone Anabolic Effect of Bortezomib in Relapsed Multiple
Myeloma (MM) Patients. ASH Annual Meeting Abstracts 11 0[11] 16.11.2007: 2719
MissingFormLabel
Prof. Dr. Orhan Sezer
Hämatologie und Onkologie, Charité – Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Phone: ++ 49/30/4 50 61 31 05
Fax: ++ 49/30/4 50 52 79 07
Email: sezer@charite.de