Zusammenfassung
Tiermodelle spielen für die Erforschung der Ätiologie, Pathogenese und Therapieoptionen
verschiedenster neurologischer Erkrankungen eine bedeutende Rolle. Ihr Nutzen und
ihre Limitierungen werden schwerpunktmäßig am Beispiel der experimentellen Autoimmun-Enzephalomyelitis
(EAE), dem Tiermodell der Multiplen Sklerose (MS), diskutiert. Spezifische Fragen
der Genetik, Pathogenese, Diagnostik und Therapie entzündlicher, degenerativer, ischämischer,
traumatischer und neoplastischer Erkrankungen des Nervensystems erfordern jeweils
spezielle Tiermodelle. Alternativmethoden auf der Basis von Zell-, Gewebs- und Organkulturen
sowie Computersimulationen sind bisher nur selten ähnlich aussagekräftig. Neue krankheitsphasenspezifische
Biomarker werden benötigt, um die Übertragbarkeit der Resultate aus dem Tierversuch
in die klinische Praxis zu verbessern.
Abstract
Animal models play an important role for exploration of the aetiology, pathogenesis
and therapy of various neurological diseases. Their benefit and limitations are being
discussed mainly focussed at experimental autoimmune encephalomyelitis (EAE), the
animal model of multiple sclerosis (MS). To answer specific questions concerning the
genetics, pathogenesis, diagnostics and treatment of inflammatory, degenerative, ischemic,
traumatic und neoplastic diseases of the nervous system different animal models are
needed. So far, these are only partially available. Rarely there are alternative methods
such as cell, tissue and organ cultures and computer simulations. New phase-specific
biomarkers are needed in order to improve the potency of experimental results to be
translated into clinical practice.
Schlüsselwörter
Tiermodelle - translationale Medizin - Therapiestudien - experimentelle Autoimmun-Enzephalomyelitis
Key words
animal models - translational medicine - therapeutic trials - experimental autoimmune
encephalomyelitis
Literatur
- 1
Iijima K, Iijima-Ando K.
Drosophila models of Alzheimer’s amyloidosis: the challenge of dissecting the complex
mechanisms of toxicity of amyloid-█ 42.
J Alzheimers Dis.
2008;
15
523-540
- 2
Puccio H.
Multicellular models of Friedreich ataxia.
J Neurol.
2009;
256 (Suppl 1)
18-24
- 3
Sriram S, Steiner I.
Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis.
Ann Neurol.
2005;
58
939-945
- 4
Ransohoff R M.
EAE: pitfalls outweigh virtues of screening potential treatments for multiple sclerosis.
Trends Immunol.
2006;
27
167-168
- 5
Hünig T.
Manipulation of regulatory T-cell number and function with CD 28-specific monoclonal
antibodies.
Adv Immunol.
2007;
95
111-148
- 6
Shuaib A, Lees K R, Lyden P. et al .
NXY-059 for the treatment of acute ischemic stroke.
N Engl J Med.
2007;
357
562-571
- 7
Strauss U, Kole M H, Bräuer A U. et al .
An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy.
Eur J Neurosci.
2004;
19
3048-3058
- 8
Mazrier H, Van Hoeven M, Wang P. et al .
Inheritance, biochemical abnormalities, and clinical features of feline mucolipidosis
II: the first animal model of human I-cell disease.
J Hered.
2003;
94
363-373
- 9
Longa E Z, Weinstein P R, Carlson S. et al .
Reversible middle cerebral artery occlusion without craniectomy in rats.
Stroke.
1989;
20
84-91
- 10
Kuroiwa T, Xi G, Hua Y. et al .
Development of a rat model of photothrombotic ischemia and infarction within the caudoputamen.
Stroke.
2009;
40
248-253
- 11
Moran L B, Graeber M B.
The facial nerve axotomy model.
Brain Res Brain Res Rev.
2004;
44
154-178
- 12
Kerschensteiner M, Schwab M E, Lichtman J W. et al .
In vivo imaging of axonal degeneration and regeneration in the injured spinal cord.
Nat Med.
2005;
11
572-577
- 13
Cernak I.
Animal models of head trauma.
NeuroRx.
2005;
2
410-422
- 14
Böttcher T, Ren H, Goiny M. et al .
Clindamycin is neuroprotective in experimental Streptococcus pneumoniae meningitis
compared with ceftriaxone.
J Neurochem.
2004;
91
1450-1460
- 15
Ungerstedt U.
6-Hydroxy-dopamine induced degeneration of central monoamine neurons.
Eur J Pharmacol.
1968;
5
107-111
- 16
Beal M F, Ferrante R J, Swartz K J. et al .
Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease.
J Neurosci.
1991;
11
1649-1659
- 17
Giovanni A, Sonsalla P K, Heikkila R E.
Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
Part 2: Central administration of 1-methyl-4-phenylpyridinium.
J Pharmacol Exp Ther.
1994;
270
1008-1014
- 18
Mix E, Olsson T, Solders G. et al .
Effect of ion channel blockers on immune response and course of experimental allergic
neuritis.
Brain.
1989;
112
1405-1418
- 19
Christadoss P, Poussin M, Deng C.
Animal models of myasthenia gravis.
Clin Immunol.
2000;
94
75-87
- 20
Gold R, Linington C, Lassmann H.
Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70
years of merits and culprits in experimental autoimmune encephalomyelitis research.
Brain.
2006;
129
1953-1971
- 21
Steinman L, Zamvil S S.
How to successfully apply animal studies in experimental allergic encephalomyelitis
to research on multiple sclerosis.
Ann Neurol.
2006;
60
12-21
- 22
Mix E, Meyer-Rienecker H, Zettl U K.
Animal models of multiple sclerosis for the development and validation of novel therapies
– potential and limitations.
J Neurol.
2008;
255 (Suppl 6)
7-14
- 23
Owens T, Wekerle H, Antel J.
Genetic models for CNS inflammation.
Nat Med.
2001;
7
161-166
- 24
Hörsten von S, Schmitt I, Nguyen H P. et al .
Transgenic rat model of Huntington’s disease.
Hum Mol Genet.
2003;
12
617-624
- 25
Awasthi A, Riol-Blanco L, Jäger A. et al .
Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing
cells.
J Immunol.
2009;
182
5904-5908
- 26
Baloh R H, Strickland A, Ryu E. et al .
Congenital hypomyelinating neuropathy with lethal conduction failure in mice carrying
the Egr2 I 268N mutation.
J Neurosci.
2009;
29
2312-2321
- 27 Schenkel J. Transgene Tiere. Heidelberg; Springer 2006 2. Aufl
- 28
Friese M A, Jakobsen K B, Friis L. et al .
Opposing effects of HLA class I molecules in tuning autoreactive CD 8 + T cells in
multiple sclerosis.
Nat Med.
2008;
14
1227-1235
- 29
Krishnamoorthy G, Holz A, Wekerle H.
Experimental models of spontaneous autoimmune disease in the central nervous system.
J Mol Med.
2007;
85
1161-1173
- 30
Yamada M, Sato T, Tsuji S. et al .
CAG repeat disorder models and human neuropathology: similarities and differences.
Acta Neuropathol.
2008;
115
71-86
- 31 Ammann D. Transgene Tiere als Krankheitsmodelle. 2003
www.gentechnologie.ch/papiere/krankheitsmodelle03.pdf
- 32
Philip M, Benatar M, Fisher M. et al .
Methodological quality of animal studies of neuroprotective agents currently in phase
II/III acute ischemic stroke trials.
Stroke.
2009;
40
577-581
- 33
Ibrahim S M, Mix E, Böttcher T. et al .
Gene expression profiling of the nervous system in murine experimental autoimmune
encephalomyelitis.
Brain.
2001;
124
1927-1938
- 34
Serrano-Fernández P, Ibrahim S M, Zettl U K. et al .
Intergenomic consensus in multifactorial inheritance loci: the case of multiple sclerosis.
Genes Immun.
2004;
5
615-620
- 35
Fernald G H, Yeh R F, Hauser S L. et al .
Mapping gene activity in complex disorders: Integration of expression and genomic
scans for multiple sclerosis.
J Neuroimmunol.
2005;
167
157-169
- 36
Mazón Peláez I, Vogler S, Strauss U. et al .
Identification of quantitative trait loci controlling cortical motor evoked potentials
in experimental autoimmune encephalomyelitis: correlation with incidence, onset and
severity of disease.
Hum Mol Genet.
2005;
14
1977-1989
- 37
Möller S, Zettl U K, Serrano-Fernández P. et al .
Comparative genomics for the investigation of autoimmune diseases.
Curr Pharm Des.
2006;
12
3707-3722
- 38
Zorzella S F, Seger J, Martins D R. et al .
Resistance to experimental autoimmune encephalomyelitis development in Lewis rats
from a conventional animal facility.
Mem Inst Oswaldo Cruz.
2007;
102
931-936
- 39
Zettl U K, Gold R, Toyka K V. et al .
Intravenous glucocorticosteroid treatment augments apoptosis of inflammatory T cells
in experimental autoimmune neuritis (EAN) of the Lewis rat.
J Neuropathol Exp Neurol.
1995;
54
540-547
- 40
Benecke R, Takano K, Schmidt J. et al .
Tetanus toxin induced actions on spinal Renshaw cells and Ia-inhibitory interneurones
during development of local tetanus in the cat.
Exp Brain Res.
1977;
27
271-286
- 41
Iwasaki T.
Contribution of experimental paradigms of viral infectious diseases to diagnostic
pathology.
Semin Diagn Pathol.
2007;
24
237-242
- 42
Morrissey S P, Stodal H, Zettl U. et al .
In vivo MRI and its histological correlates in acute adoptive transfer experimental
allergic encephalomyelitis. Quantification of inflammation and oedema.
Brain.
1996;
119
239-248
- 43
Luo J, Ho P, Steinman L. et al .
Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease.
J Neuroinflammation.
2008;
5
1-6
- 44 Lavi E, Constantinescu C S. Experimental models of multiple sclerosis. New York;
Springer 2005
- 45 McArthur R A, Borsini F. Animal and Translational Models for CNS Drug Discovery. Amsterdam;
Elsevier 2008
- 46
Butti E, Bergami A, Recchia A. et al .
IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery
in mouse models of multiple sclerosis.
Gene Ther.
2008;
15
504-515
- 47
Lundberg C, Björklund T, Carlsson T. et al .
Applications of lentiviral vectors for biology and gene therapy of neurological disorders.
Curr Gene Ther.
2008;
8
461-473
- 48
Conti L, Reitano E, Cattaneo E.
Neural stem cell systems: diversities and properties after transplantation in animal
models of diseases.
Brain Pathol.
2006;
16
143-154
- 49
Einstein O, Ben-Hur T.
The changing face of neural stem cell therapy in neurologic diseases.
Arch Neurol.
2008;
65
452-456
- 50
Henning J, Koczan D, Glass A. et al .
Deep brain stimulation in a rat model modulates TH, CaMKIIa and Homer1 gene expression.
Eur J Neurosci.
2007;
25
239-250
- 51
Lock C, Hermans G, Pedotti R. et al .
Gene-microarray analysis of multiple sclerosis lesions yields new targets validated
in autoimmune encephalomyelitis.
Nat Med.
2002;
8
500-508
- 52
Kappos L, Comi G, Panitch H. et al .
Induction of a non-encephalitogenic type 2T helper-cell autoimmune response in multiple
sclerosis after administration of an altered peptide ligand in a placebo-controlled,
randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group.
Nat Med.
2000;
6
1176-1182
- 53
Stüve O, Gold R, Chan A. et al .
alpha4-Integrin antagonism with natalizumab: effects and adverse effects.
J Neurol.
2008;
255 (Suppl 6)
58-65
- 54
Bielekova B, Kadom N, Fisher E. et al .
MRI as a marker for disease heterogeneity in multiple sclerosis.
Neurology.
2005;
65
1071-1076
- 55
Mix E, Ibrahim S, Pahnke J. et al .
Gene-expression profiling of the early stages of MOG-induced EAE proves EAE-resistance
as an active process.
J Neuroimmunol.
2004;
151
158-170
- 56
Beyer S, Mix E, Hoffrogge R. et al .
Neuroproteomics in stem cell differentiation.
Proteomics Clin Appl.
2007;
1
1513-1523
- 57
Schrader M, Selle H.
The process chain for peptidomic biomarker discovery.
Dis Markers.
2006;
22
27-37
- 58
Martin R, Bielekova B, Hohlfeld R. et al .
Biomarkers in multiple sclerosis.
Dis Markers.
2006;
22
183-185
- 59
Marek K, Jennings D, Tamagnan G. et al .
Biomarkers for Parkinson’s disease: tools to assess Parkinson’s disease onset and
progression.
Ann Neurol.
2008;
64 (Suppl 2)
S111-S121
- 60
Melrose H L, Lincoln S J, Tyndall G M. et al .
Parkinson’s disease: a rethink of rodent models.
Exp Brain Res.
2006;
173
196-204
- 61
Jenner P.
Functional models of Parkinson’s disease: a valuable tool in the development of novel
therapies.
Ann Neurol.
2008;
64 (Suppl 2)
S16-S29
- 62
Wohlfarth K, Göschel H, Frevert J. et al .
Botulinum A toxins: units versus units.
Naunyn Schmiedebergs Arch Pharmacol.
1997;
355
335-340
- 63
Hadjilambreva G, Mix E, Rolfs A. et al .
Neuromodulation by a cytokine: interferon-beta differentially augments neocortical
neuronal activity and excitability.
J Neurophysiol.
2005;
93
843-852
- 64
Moroni F, Formentini L, Gerace E. et al .
Selective PARP-2 inhibitors increase apoptosis in hippocampal slices but protect cortical
cells in models of post-ischaemic brain damage.
Br J Pharmacol.
2009;
157
854-862
- 65
Rowe L, Almasri M, Lee K. et al .
Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal
networks.
Lab Chip.
2007;
7
475-482
- 66
Gross G W.
Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold
multimicroelectrode surface.
IEEE Trans Biomed Eng.
1979;
26
273-279
- 67
Gramowski A, Jügelt K, Stüwe S. et al .
Functional screening of traditional antidepressants with primary cortical neuronal
networks grown on multielectrode neurochips.
Eur J Neurosci.
2006;
24
455-465
- 68
Köster P, Sakowski J, Baumann W. et al .
A new exposure system for the in vitro detection of GHz field effects on neuronal
networks.
Bioelectrochemistry.
2007;
70
104-114
- 69 www.tysabri.com/tysbProject/tysb.portal/_baseurl/twoColLayout/SCSRepository/en_US/tysb/home/touch-prescribing/index.xml
- 70 www.clinicaltrials.gov/ct2 /show/NCT00477113
- 71 Tierschutzgesetz in der Fassung vom 18. Mai 2006, Fünfter Abschnitt, Tierversuche,
§ 7, Absatz2.
- 72
Baxter A G.
The origin and application of experimental autoimmune encephalomyelitis.
Nat Rev Immunol.
2007;
7
904-912
- 73
Zhu J, Mix E, Link H.
Cytokine production and the pathogenesis of experimental autoimmune neuritis and Guillain-Barré
syndrome.
J Neuroimmunol.
1998;
84
40-52
- 74
Lu M O, Duan R S, Quezada H C. et al .
Aggravation of experimental autoimmune neuritis in TNF-alpha receptor 1 deficient
mice.
J Neuroimmunol.
2007;
186
19-26
- 75
Grieb P.
Transgenic models of amyotrophic lateral sclerosis.
Folia Neuropathol.
2004;
42
239-248
- 76
Shan X, Vocadlo D, Krieger C.
Mislocalization of TDP-43 in the G 93A mutant SOD1 transgenic mouse model of ALS.
Neurosci Lett.
2009;
458
70-74
- 77
Woodruff-Pak D S.
Animal models of Alzheimer’s disease: therapeutic implications.
J Alzheimers Dis.
2008;
15
507-521
- 78
Pahnke J, Wolkenhauer O, Krohn M. et al .
Clinico-pathologic function of cerebral ABC transporters – implications for the pathogenesis
of Alzheimer’s disease.
Curr Alzheimer Res.
2008;
5
396-405
- 79
Sarasa M, Pesini P.
Natural non-trasgenic animal models for research in Alzheimer’s disease.
Curr Alzheimer Res.
2009;
6
171-178
- 80
Kragh P M, Nielsen A L, Li J. et al .
Hemizygous minipigs produced by random gene insertion and handmade cloning express
the Alzheimer’s disease-causing dominant mutation APPsw.
Transgenic Res.
2009;
18
545-558
- 81
Zhang Q, Ding H, Li W. et al .
Senescence accelerated mouse strain is sensitive to neurodegeneration induced by mild
impairment of oxidative metabolism.
Brain Res.
2009;
1264
111-118
- 82
Scherzer C R, Jensen R V, Gullans S R. et al .
Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson’s
disease.
Hum Mol Genet.
2003;
12
2457-2466
- 83
Nuber S, Petrasch-Parwez E, Winner B. et al .
Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease.
J Neurosci.
2008;
28
2471-2484
- 84
Allen R P, Earley C J.
The role of iron in restless legs syndrome.
Mov Disord.
2007;
22 (Suppl 18)
S440-S448
- 85
Bates G P, Mangiarini L, Davies S W.
Transgenic mice in the study of polyglutamine repeat expansion diseases.
Brain Pathol.
1998;
8
699-714
- 86
Menini C, Silva-Barrat C.
Value of the monkey Papio papio for the study of epilepsy (French).
Pathol Biol.
1990;
38
205-213
- 87
Chen Z, Ljunggren H G, Bogdanovic N. et al .
Excitotoxic neurodegeneration induced by intranasal administration of kainic acid
in C 57BL/ 6 mice.
Brain Res.
2002;
931
135-145
- 88
Schubert M, Siegmund H, Pape H C. et al .
Kindling-induced changes in plasticity of the rat amygdala and hippocampus.
Learn Mem.
2005;
12
520-526
- 89
Locke C J, Williams S N, Schwarz E M. et al .
Genetic interactions among cortical malformation genes that influence susceptibility
to convulsions in C. elegans.
Brain Res.
2006;
1120
23-34
- 90
Sharma A K, Reams R Y, Jordan W H. et al .
Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions.
Toxicol Pathol.
2007;
35
984-999
- 91
Wynshaw-Boris A.
Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration
and development.
Clin Genet.
2007;
72
296-304
- 92
Aguzzi A, Sigurdson C, Heikenwaelder M.
Molecular mechanisms of prion pathogenesis.
Annu Rev Pathol.
2008;
3
11-40
- 93
Raike R S, Jinnah H A, Hess E J.
Animal models of generalized dystonia.
NeuroRx.
2005;
2
504-512
- 94
Grundmann K, Reischmann B, Vanhoutte G. et al .
Overexpression of human wildtype torsinA and human DeltaGAG torsinA in a transgenic
mouse model causes phenotypic abnormalities.
Neurobiol Dis.
2007;
27
190-206
- 95
Bilzer T, Reifenberger G, Wechsler W.
Chemical induction of brain tumors in rats by nitrosoureas: molecular biology and
neuropathology.
Neurotoxicol Teratol.
1989;
11
551-556
- 96
Huse J T, Holland E C.
Genetically engineered mouse models of brain cancer and the promise of preclinical
testing.
Brain Pathol.
2009;
19
132-143
- 97
Kunkel L M, Bachrach E, Bennett R R. et al .
Diagnosis and cell-based therapy for Duchenne muscular dystrophy in humans, mice,
and zebrafish.
J Hum Genet.
2006;
51
397-406
- 98
Haskins M E.
Animal models for mucopolysaccharidosis disorders and their clinical relevance.
Acta Paediatr Suppl.
2007;
96
56-62
- 99
Jones I, He X, Katouzian F. et al .
Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease
and generation of mutation-specific mouse models.
Mol Genet Metab.
2008;
95
152-162
- 100
Eltayeb R, Sharafeldin A, Jaster R. et al .
Trypanosoma brucei brucei induces interferon-gamma expression in rat dorsal root ganglia
cells via a tyrosine kinase-dependent pathway.
J Infect Dis.
2000;
181
400-404
Dr. med. Eilhard Mix
Klinik und Poliklinik für Neurologie, Universität Rostock
Gehlsheimer Str. 20
18147 Rostock
Email: eilhard.mix@med.uni-rostock.de