manuelletherapie 2009; 13(4): 156-166
DOI: 10.1055/s-0028-1109735
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Feedforward-Aktivität des M. transversus abdominis und M. multifidus bei Vorfuß- versus Rückfußkontaktlaufmuster

PilotstudieFeedforward Activity of the Transversus Abdominis and Multifidus Muscle in a Forefoot versus Rearfoot Strike Running PatternPilot StudyJ. Swager van Dok1 , J. M. H. Cabri2
  • 1University of Applied Sciences „Thim van der Laan” Landquart Switzerland, Praxis für Physiotherapie, Grenchen, Schweiz
  • 2Technische Universität Lissabon, Fakultät Bewegungswissenschaften, Lissabon, Portugal
Further Information

Publication History

Manuskript eingetroffen: 2.2.2009

Manuskript akzeptiert: 2.5.2009

Publication Date:
22 September 2009 (online)

Zusammenfassung

Aus verschiedenen Gründen läuft eine beträchtliche Anzahl von Läufern bei geringer und moderater Geschwindigkeit mit einem Vorfußkontaktlaufmuster, obwohl die menschliche Ferse beim Walken und langsamen Laufen anatomisch für die Fersenlandung „designt” zu sein scheint.

Die vorliegende Ex-post-facto-Forschungsarbeit untersuchte die bilaterale Aktivität von M. transversus abdominis und M. multifidus, um Hinweise auf die Rumpfstabilität beim Rückfuß- versus Vorfußkontaktlaufmuster zu finden.

Bei 12 weiblichen Freizeitläufern (je 6 Vorfuß- und Rückfußkontaktläufer) mit gleichem Gewicht, Größe, Alter und Lauferfahrung wurden während Laufbandjoggen mit definierten Geschwindigkeiten bilaterale oberflächliche EMG-Daten des M. transversus abdominis und M. multifidus gesammelt. Außerdem wurden die IEMG-Werte zwischen Muskeleinsatz und initialem Kontakt (Feedforward) quantifiziert. Das Rechts-/Links-Verhältnis dieser Werte wurde berechnet und analysiert.

Laut der aktuellen Literatur wird empfohlen, bei geringen und moderaten Geschwindigkeiten mit einem Rückfußkontaktmuster zu laufen. Die in der vorliegenden Studie festgestellte symmetrischere Aktivierung des M. transversus abdominis könnte auf eine bessere Rumpfstabilität beim Rückfußkontaktlaufmuster bei den untersuchten Geschwindigkeiten hindeuten.

Abstract

For several reasons a considerable percentage of runners run at low and moderated speeds in a forefoot strike running pattern although the human heel seems to be anatomically ”designed” for heel landing in walking and low speed running.

This ex post facto research examined bilateral activity of the transversus abdominis and multifidus in order to find indications concerning core stability in a rear foot versus a forefoot strike running pattern.

In 12 female recreational runners (6 forefoot and rear foot strikers each) with equal weight, height, age and running experience bilateral surface EMG data from the transversus abdominis muscle and multifidus were collected during treadmill running at a predefined running speed time. In addition, IEMG values were quantified between muscle onset and initial contact (feed forward). The left to right proportions of these values were estimated and analysed.

Current literature indicates that it is advisable to adapt a rear foot strike running pattern at low and moderate speeds. This study found more symmetrical activation of the transversus abdominis muscle in the rear foot strike group which might indicate a better core stability for the investigated speeds.

Literatur

  • 1 Ardigo L P, Lafortuna C, Minetti A E. et al . Metabolic and mechanical aspects of foot landing type, forefoot and rearfoot strike, in human running.  Acta Physiol Scand. 1995;  155 17-22
  • 2 Barr K P, Griggs M, Cadby T. Lumbar stabilization: core concepts and current literature, Part 1.  Am J Phys Med Rehabil. 2005;  84 473-480
  • 3 Boyling G J, Jull G. Grieve’s Modern Manual Therapy. The Vertebral Column. New York; Elsevier 2005
  • 4 Bramble D M, Lieberman D E. Endurance running and the evolution of Homo.  Nature. 2004;  18 345-352
  • 5 Brüggemann G P. Impact biomechanics and joint loading in running. 12th Annual Congress of the ECCS, Jyväskylä/Finland, 11.–14.7.2007. 
  • 6 Brunet M E, Cook S D, Brinker M R. et al . A survey of running injuries in 1505 competitive and recreational runners.  J Sports Med Phys Fitness. 1990;  30 307-315
  • 7 Cai L L, Courtine G, Fong A J. et al . Plasticity of functional connectivity in the adult spinal cord.  Philos Trans R Soc Lond B Biol Sci. 2006;  361 1635-1646
  • 8 Cavanagh P R, Lafortune M A. Ground reaction forces in distance running.  J Biomech. 1980;  13 397-406
  • 9 Cavanagh P R. Forces and pressures between the foot and the floor during normal walking and running. Biomechanics Symposium Indianapolis; 1981: 172-190
  • 10 Cholewicki J, Panjabi M M, Khachatryan A. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture.  Spine. 1997;  22 2207-2212
  • 11 Comerford M J, Mottram S L. Functional stability re-training: principles and strategies for managing mechanical dysfunction.  Man Ther. 2001;  6 3-14
  • 12 Cresswell A G, Oddsson L, Thorstensson A. The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing.  Exp Brain Res. 1994;  98 336-341
  • 13 DeVita P. The selection of a standard convention for analyzing gait data based on the analysis of relevant biomechanical factors.  J Biomech. 1994;  27 501-508
  • 14 Dimitrijevic M R, Gerasimenko Y, Pinter M M. Evidence for a spinal central pattern generator in humans.  Ann N Y Acad Sci. 1998;  860 360-376
  • 15 Dugan S A, Bhat K P. Biomechanics and analysis of running gait.  Phys Med Rehabil Clin N Am. 2005;  16 603-621
  • 16 Ebenbichler G R, Oddsson L I, Kollmitzer J. et al . Sensory-motor control of the lower back: implications for rehabilitation.  Med Sci Sports Exerc. 2001;  33 1889-1898
  • 17 El-Rich M, Shirazi-Adl A, Arjmand N. Muscle activity, internal loads, and stability of the human spine in standing postures: combined model and in vivo studies.  Spine. 2004;  29 2633-2642
  • 18 Giddings V L, Beaupre G S, Whalen R T. et al . Calcaneal loading during walking and running.  Med Sci Sports Exerc. 2000;  32 627-634
  • 19 Harkema S J, Hurley S L, Patel U K. et al . Human lumbosacral spinal cord interprets loading during stepping.  J Neurophysiol. 1997;  77 797-811
  • 20 Hasegawa H, Yamauchi T, Kraemer W J. Foot strike patterns of runners at the 15-km point during an elite-level half marathon.  J Strength Cond Res. 2007;  21 888-893
  • 21 Hermens H J. European Recommendations for Surface Electromyography Results of the Seniam Project (SENIAM). Enschede; Roessingh Research and Development 1999
  • 22 Hides J A, Jull G A, Richardson C A. Long-term effects of specific stabilizing exercises for first-episode low back pain.  Spine. 2001;  26 E243-E248
  • 23 Hodges P W, Bui B H. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography.  Electroencephalogr Clin Neurophysiol. 1996;  101 511-519
  • 24 Hodges P W, Richardson C A. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis.  Spine. 1996;  21 2640-2650
  • 25 Hodges P, Cresswell A, Thorstensson A. Preparatory trunk motion accompanies rapid upper limb movement.  Exp Brain Res. 1999;  124 69-79
  • 26 Hooper S L. Central pattern generators.  Curr Biol. 2000;  10 R176
  • 27 Keller T S, Weisberger A M, Ray J L. et al . Relationship between vertical ground reaction force and speed during walking, slow jogging, and running.  Clin Biomech (Bristol, Avon). 1996;  11 253-259
  • 28 Kendall Peterson F, Kendall McCreary E, Geise Provance P. Muskeln – Funktionen und Tests. München; Urban & Fischer 2001
  • 29 Kerr B A BL, Fisher V, Neil R. Footstrike patterns in distance running. Nigg BM KB Biomechanical aspects of sport shoes and playing surfaces Calgary; University of Calgary 1983
  • 30 Lamprecht M FA, Stamm H P. Das Sportverhalten der Schweizer Bevölkerung. Magglingen; Sozialforschung & Beratung AG 2008
  • 31 Laughton C A, McClay D avis I, Hamill J. Effect of strike pattern and orthotic intervention on tibial shock during running.  Journal of Applied Biomechanics. 2003;  19 153-168
  • 32 Leetun D T, Ireland M L, Willson J D. et al . Core stability measures as risk factors for lower extremity injury in athletes.  Med Sci Sports Exerc. 2004;  36 926-934
  • 33 Marshall P, Murphy B. The validity and reliability of surface EMG to assess the neuromuscular response of the abdominal muscles to rapid limb movement.  J Electromyogr Kinesiol. 2003;  13 477-489
  • 34 Marti B, Hättich A. Bewegung – Sport – Gesundheit. Epidemiologisches Kompendium. Bern; Haupt 1999
  • 35 McClay I. Lower extremity kinematic comparisons between forefoot and rearfoot striker. 19th Annual Meeting of the ASB,. Palo Alto; 1995: 211-212
  • 36 McClay I, Williams D. Lower extremity mechanics in a converted forefoot strike pattern in runners. North American Congress on Biomechanics,. Waterloo/Canada; 1998
  • 37 McGill S, Juker D, Kropf P. Appropriately placed surface EMG electrodes reflect deep muscle activity (psoas, quadratus lumborum, abdominal wall) in the lumbar spine.  J Biomech. 1996;  29 1503-1507
  • 38 McGill S M, Cholewicki J. Biomechanical basis for stability: an explanation to enhance clinical utility.  J Orthop Sports Phys Ther. 2001;  31 96-100
  • 39 Moseley G L, Hodges P W, Gandevia S C. Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements.  Spine. 2002;  27 E29-E36
  • 40 Munro C F, Miller D I, Fuglevand A J. Ground reaction forces in running: a reexamination.  J Biomech. 1987;  20 147-155
  • 41 Nigg B M. GKCG-PBBM. Impact Forces during Heel-Toe Running.  Journal of Applied Biomechanics. 1995;  11 407-432
  • 42 Nigg B M. The role of impact forces and foot pronation: a new paradigm.  Clin J Sport Med. 2001;  11 2-9
  • 43 Nigg B M. Footwear research – past, present and future. 7th Symposium on Footwear Biomechanics,. Cleveland/Ohio; July 27 – 29; 2005
  • 44 Nigg B M, Herzog W. Biomechanics of the Musculo-Skeletal System. New York; Wiley 2007
  • 45 Novacheck T F. The biomechanics of running.  Gait Posture. 1998;  1 77-95
  • 46 Panjabi M, Abumi K, Duranceau J. et al . Spinal stability and intersegmental muscle forces. A biomechanical model.  Spine. 1989;  14 194-200
  • 47 Pool-Goudzwaard A L, Vleeming A, Stoeckart R. et al . Insufficient lumbopelvic stability: a clinical, anatomical and biomechanical approach to ”a-specific” low back pain.  Man Ther. 1998;  3 12-20
  • 48 Richardson C A, Snijders C J. et al . The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain.  Spine. 2002;  27 399-405
  • 49 Richardson C A, Hides J. Therapeutic exercise for lumbopelvic stabilisation. Edinburgh; Churchill Livingstone 2004
  • 50 Rist H J, Kälina X, Weisskopf L. Increased Frequency of Plantar Fasciosis in Forefoot Running.  Sports Orthopaedics and Traumatology. 2007;  23 57-62
  • 51 Schache A G, Bennell K L, Blanch P D. et al . The coordinated movement of the lumbo-pelvic-hip complex during running: a literature review.  Gait Posture. 1999;  10 30-47
  • 52 Schache A G, Blanch P, Rath D. et al . Three-dimensional angular kinematics of the lumbar spine and pelvis during running.  Hum Mov Sci. 2002;  21 273-293
  • 53 Steffny H. Das große Laufbuch. München; Südwestverlag 2004
  • 54 Valiant G A, Cavanagh P R. An in vivo determination of the mechanical characteristics of the human heel pad.  Journal of Biomechanics. 1985;  18 242
  • 55 Wilke H J, Wolf S, Claes L E. et al . Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study.  Spine. 1995;  20 192-198
  • 56 Yang J F, Gorassini M. Spinal and brain control of human walking: implications for retraining of walking.  Neuroscientist. 2006;  12 379-389

Jan Swager van Dok

MSc, B.PT, PT OMTsvomp

Kirchstr. 1

2540 Grenchen, Schweiz

Email: Jdok@besonet.ch

    >