Rofo 2010; 182(2): 133-139
DOI: 10.1055/s-0028-1109753
Experimentelle Radiologie

© Georg Thieme Verlag KG Stuttgart · New York

Einfluss der mittels MRT bestimmten mikrovaskulären Permeabilität auf die Akkumulation von Vinorelbine in experimentellen Xenograft-Tumoren

Effects of MRI-Assayed Microvascular Permeability on the Accumulation of Vinorelbine in Xenograft TumorsH.-J. Raatschen1, 2 , Y. Fu2 , V. Rogut2 , G. H. Simon2, 3 , B. Sennino4 , K.-J. Wolf1 , R. C. Brasch2
  • 1Klinik und Hochschulambulanz für Radiologie, Charité Universitätsmedizin Berlin
  • 2Center for Pharmaceutical and Molecular Imaging, Department of Radiology, University of California, San Francisco
  • 3Abteilung für Diagnostische und Interventionelle Radiologie, Nuklearmedizin, Klinikum Garmisch-Partenkirchen
  • 4Cardiovascular Research Institute, Comprehensive Cancer Center, University of California, San Francisco
Further Information

Publication History

eingereicht: 27.5.2009

angenommen: 18.8.2009

Publication Date:
27 October 2009 (online)

Zusammenfassung

Ziel: Evaluierung des Einflusses der mittels kontrastverstärkter MRT bestimmten vaskulären Permeabilität auf die Anreicherung makromolekularer Zytostatika in Tumoren. Material und Methoden: Subkutan implantierte MDA-MB 435-Tumoren wurden mit dem Angiogenesehemmer Bevacizumab in einer Einzeldosis von 0,1 mg (n = 5) bzw. 1,0 mg (n = 10) behandelt oder erhielten NaCl-Lösung (Kontrolltiere, n = 8). 24 h später erfolgte ein Albumin-(Gd-DTPA)30-verstärktes, dynamisches MRT, welchem die i. v. Gabe des Zytostatikum Vinorelbine unmittelbar voranging. Die Vinorelbine-Konzentrationen der Tumoren wurden anschließend mittels Hochleistungs-Flüssigkeitschromatografie quantifiziert. Tumor-Permeabilitäten (KPS) wurden anhand der MRT-Daten unter Einsatz eines pharmakokinetischen Modells bestimmt. Ergebnisse: KPS-Werte lagen in der Kontrollgruppe, der 0,1 mg- und der 1,0 mg-Gruppe bei 3,70 ± 1,12, 1,95 ± 0,70 und 0,75 ± 0,46 µl min–1cm–3. KPS war in der Kontrollgruppe signifikant höher als in der 1,0 mg-Bevacizumab-Gruppe (p < 0,05). Vinorelbine-Konzentrationen wurden in der Kontrollgruppe, der 0,1 mg- und der 1,0 mg-Gruppe bestimmt als 409,4 ± 109,7, 387,5 ± 47,5 und 250,7 ± 71,9 ng/g. Diese Unterschiede waren nicht signifikant. KPS und Vinorelbine-Konzentrationen korrelierten moderat und signifikant (r = 0,49, p < 0,05). Schlussfolgerung: Aufgrund der positiven Korrelation zwischen KPS und Vinorelbine-Konzentrationen kann die eingesetzte Technik möglicherweise zur prognostischen Abschätzung der Akkumulation makromolekularer Zytostatika und zur Optimierung einer individualisierten Tumortherapie beitragen.

Abstract

Purpose: To determine the effects of MRI-assayed vascular leakiness on the delivery of macromolecular therapeutics to tumors. Materials and Methods: MDA-MB 435 tumors, subcutaneously implanted into nude rats were treated with a single dose of bevacizumab at levels of 0.1 mg (n = 5) or 1.0 mg (n = 10) or received saline (control animals, n = 8). After 24 hours, albumin-(Gd-DTPA)30-enhanced MRI was performed. Just prior to MRI, the cytotoxic drug vinorelbine was administered intravenously. Upon completion of the MR experiment, tumor vinorelbine concentrations were quantified by high performance liquid chromatography (HPLC). Vascular leakiness (KPS) was calculated based on the MRI data using a pharmacokinetic model. Results: KPS was calculated as 3.70 ± 1.12 (control tumors), 1.95 ± 0.70 (0.1 mg group) and 0.75 ± 0.46 µl min–1cm–3 (1.0 mg group). KPS was significantly higher in the control group compared to the 1.0 mg bevacizumab group. Vinorelbine concentrations were measured as 409.4 ± 109.7 (control tumors), 387.5 ± 47.5 (0.1 mg group) and 250.7 ± 71.9 (1.0 mg group). These differences were not significant. A moderate and significant correlation was found between KPS and Vinorelbine concentrations in tumors (r = 0.49, p < 0.05). Conclusion: MRI-assayed KPS based on dynamic MRI enhanced by albumin-(Gd-DTPA)30 correlated significantly with vinorelbine accumulation in experimental xenograft tumors under angiogenesis inhibition. Thus, the MRI technique applied in our study could potentially help to predict accumulation of macromolecular cytotoxic drugs and to optimize individual therapeutic regimes in tumors.

Literatur

  • 1 Ferrara N. VEGF as a therapeutic target in cancer.  Oncology. 2005;  69 11-16
  • 2 Franiel T, Lüdemann L, Taupitz M. et al . Pharmakokinetische MRT der Prostata: Parameter zur Unterscheidung von Low-grade- und High-grade-Prostatakarzinomen.  Fortschr Röntgenstr. 2009;  181 536-542
  • 3 Daldrup H, Shames D M, Wendland M. et al . Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media.  Am J Roentgenol. 1998;  171 941-949
  • 4 Preda A, Novikov V, Moglich M. et al . MRI monitoring of Avastin antiangiogenesis therapy using B 22 956 / 1, a new blood pool contrast agent, in an experimental model of human cancer.  J Magn Reson Imaging. 2004;  20 865-873
  • 5 Preda A, Vliet van M, Krestin G P. et al . Magnetic resonance macromolecular agents for monitoring tumor microvessels and angiogenesis inhibition.  Invest Radiol. 2006;  41 325-331
  • 6 Turetschek K, Preda A, Floyd E. et al . MRI monitoring of tumor response to a novel VEGF tyrosine kinase inhibitor in an experimental breast cancer model.  Acad Radiol. 2002;  9 S519-S520
  • 7 Turetschek K, Preda A, Floyd E. et al . MRI monitoring of tumor response following angiogenesis inhibition in an experimental human breast cancer model.  Eur J Nucl Med Mol Imaging. 2003;  30 448-455
  • 8 Raatschen H J, Simon G H, Fu Y. et al . Vascular permeability during antiangiogenesis treatment: MR imaging assay results as biomarker for subsequent tumor growth in rats.  Radiology. 2008;  247 391-399
  • 9 Cailleau R, Olive M, Cruciger Q V. Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization.  In Vitro. 1978;  14 911-915
  • 10 Ellison G, Klinowska T, Westwood R F. et al . Further evidence to support the melanocytic origin of MDA-MB-435.  Mol Pathol. 2002;  55 294-299
  • 11 Ogan M D, Schmiedl U, Moseley M E. et al . Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization.  Invest Radiol. 1987;  22 665-671
  • 12 Kobayashi S, Sakai T, Dalrymple P D. et al . Disposition of the novel anticancer agent vinorelbine ditartrate following intravenous administration in mice, rats and dogs.  Arzneimittelforschung. 1993;  43 1367-1377
  • 13 Marty M, Extra J M, Espie M. et al . Advances in vinca-alkaloids: Navelbine.  Nouv Rev Fr Hematol. 1989;  31 77-84
  • 14 Behe M, Keil B, Alfke H. et al . Kombinierte radiologische und nuklearmedizinische Bildgebung in Tierexperimenten: Ein Überblick über die aktuellen Möglichkeiten.  Fortschr Röntgenstr. 2007;  179 796-803
  • 15 Foster D M, Boston R C, Jacquez J A. et al . A resource facility for kinetic analysis: modeling using the SAAM computer programs.  Health Phys. 1989;  57 457-466
  • 16 Daldrup H E, Shames D M, Husseini W. et al . Quantification of the extraction fraction for gadopentetate across breast cancer capillaries.  Magn Reson Med. 1998;  40 537-543
  • 17 Gauvin A, Pinguet F, Poujol S. et al . High-performance liquid chromatographic determination of vinorelbine in human plasma and blood: application to a pharmacokinetic study.  J Chromatogr B Biomed Sci Appl. 2000;  748 389-399
  • 18 Tellingen van O, Kuijpers A V, Beijnen J H. et al . Plasma pharmacokinetics, tissue disposition, excretion and metabolism of vinorelbine in mice as determined by high performance liquid chromatography.  Invest New Drugs. 1993;  11 141-150
  • 19 Daldrup-Link H E, Okuhata Y, Wolfe A. et al . Decrease in tumor apparent permeability-surface area product to a MRI macromolecular contrast medium following angiogenesis inhibition with correlations to cytotoxic drug accumulation.  Microcirculation. 2004;  11 387-396
  • 20 Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.  Science. 2005;  307 58-62
  • 21 Cyran C C, Fu Y, Raatschen H J. et al . New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues.  J Magn Reson Imaging. 2008;  27 581-589
  • 22 Brasch R, Pham C, Shames D. et al . Assessing tumor angiogenesis using macromolecular MR imaging contrast media.  J Magn Reson Imaging. 1997;  7 68-74
  • 23 Pham C D, Roberts T P, Bruggen van N. et al . Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor.  Cancer Invest. 1998;  16 225-230

Dr. Hans-Jürgen Raatschen

Klinik und Hochschulambulanz für Radiologie, Charité Universitätsmedizin Berlin

Hindenburgdamm 30

12200 Berlin

Phone: ++ 49/30/84 45 30 41

Fax: ++ 49/30/84 45 44 74

Email: hans-juergen.raatschen@charite.de

    >