Laryngorhinootologie 2009; 88: S12-S31
DOI: 10.1055/s-0028-1119552
Technik für Lebensqualität – Biomaterialien und Implantate in der Hals-Nasen-Ohrenheilkunde

© Georg Thieme Verlag KG Stuttgart · New York

Biomaterialien bei Cochlea-Implantaten

Biomaterials in Cochlear ImplantsT.  Stöver1 , T.  Lenarz1
  • 1Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Medizinische Hochschule Hannover, (Direktor: Prof. Dr. med. T. Lenarz)
Further Information

Publication History

Publication Date:
07 April 2009 (online)

Zusammenfassung

Cochlea-Implantate (CI) stellen seit fast 25 Jahren den Goldstandard in der Versorgung taub geborener Kinder bzw. postlingual ertaubter Erwachsener dar. Die Cochlea-Implantate sind damit die Erfolgsgeschichte im Bereich der neurobionischen Prothesen. Durch die inzwischen routinemäßige Versorgung von Erwachsenen, aber besonders auch Klein- und Kleinstkindern, bestehen große Anforderungen an die Implantate. Dies gilt besonders im Hinblick auf die Biokompatibilität der an der Oberfläche befindlichen Anteile des CI. Darüber hinaus existieren erhebliche mechanische Herausforderungen an einzelne Bauteile, wie z. B. Flexibilität bzw. Bruchfestigkeit des Elektrodenträgers und der Bruchfestigkeit des Implantatgehäuses gegen äußere Krafteinwirkungen. Durch die unmittelbare Nähe der Implantate zur Mittelohrschleimhaut, wie auch dem Übergang zur Perilymphe der Cochlea, besteht zumindest die prinzipielle Gefahr eines Übertritts von Bakterien entlang des Elektrodenträgers in die Cochlea. Durch die vielfältigen, an das Cochlea-Implantat gestellten Anforderungen auf dem Gebiet der Biokompatibilität und der Elektrodenmechanik ergibt sich trotz des derzeit bereits hohen technischen Niveaus der Implantate weiterer Spielraum zur kontinuierlichen Verbesserung der Implantat- bzw. Materialeigenschaften und hierdurch gesteigerte Effektivität der Cochlea-Implantate. Nachfolgend soll daher auf grundlegende Materialaspekte der Cochlea-Implantate sowie zukünftige Entwicklungsmöglichkeiten eingegangen werden..

Abstract

Cochlear implants (CI) represent the „gold standard” for the treatment of congenitally deaf children and postlingually deafened adults. Thus, cochlear implantation is a success story of new bionic prosthesis development. Owing to routine application of cochlear implants in adults but also in very young children (below the age of one), high demands are placed on the implants. This is especially true for biocompatibility aspects of surface materials of implant parts which are in contact with the human body. In addition, there are various mechanical requirements which certain components of the implants must fulfil, such as flexibility of the electrode array and mechanical resistance of the implant housing. Due to the close contact of the implant to the middle ear mucosa and because the electrode array is positioned in the perilymphatic space via cochleostomy, there is a potential risk of bacterial transferral along the electrode array into the cochlea. Various requirements that have to be fulfilled by cochlear implants, such as biocompatibility, electrode micromechanics, and although a very high level of technical standards has been carried out there is still demand for the improvement of implants as well as of the materials used for manufacturing, ultimately leading to increased implant performance. General considerations of material aspects related to cochlear implants as well as potential future perspectives of implant development will be discussed.

Literatur

  • 1 Burgio P. Safety considerations of cochlear implantation.  Otolaryngol Clin North Am. 1986;  19 (2) 237-247
  • 2 Lehnhardt E. Biokompatibilität der Cochlear-implants.  Eur Arch Otorhinolaryngol Suppl. 1992;  1 223-233
  • 3 BQS Qualitätsreport 2007.  (http://www.bqs-qualitaetsreport.de) 36
  • 4 Dunn C C, Tyler R S, Oakley S, Gantz B J, Noble W. Comparison of speech recognition and localization performance in bilateral and unilateral cochlear implant users matched on duration of deafness and age at implantation.  Ear Hear. 2008;  29 (3) 352-359
  • 5 Gantz B J, Turner C. Combining acoustic and electrical speech processing: Iowa/Nucleus hybrid implant.  Acta Otolaryngol. 2004;  24 (4) 344-347
  • 6 Lenarz T, Stöver T, Buechner A. et al . Temporal bone results and hearing preservation with a new straight electrode.  Audiol Neurootol. 2006;  11 Suppl 1 34-41
  • 7 Briggs R J, Tykocinski M, Xu J. et al . Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode.  Audiol Neurootol. 2006;  11 Suppl 1 42-48
  • 8 Adunka O, Kiefer J, Unkelbach M H, Lehnert T, Gstoettner W. Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation.  Laryngoscope. 2004;  114 (7) 1237-1241
  • 9 James C J, Fraysse B, Deguine O. et al . Combined electroacoustic stimulation in conventional candidates for cochlear implantation.  Audiol Neurootol. 2006;  11 Suppl 1 57-62
  • 10 Shannon R V, Otto S R. Psychophysical measures from electrical stimulation of the human cochlear nucleus.  Hear Res. 1990;  47 (1 – 2) 159-168
  • 11 Colletti V, Shannon R V. Open set speech perception with auditory brainstem implant?.  Laryngoscope. 2005;  115 (11) 1974-1978
  • 12 Colletti V. Auditory outcomes in tumor vs. nontumor patients fitted with auditory brainstem implants.  Adv Otorhinolaryngol. 2006;  64 167-185
  • 13 Lenarz T, Lim H H, Reuter G, Patrick J F, Lenarz M. The auditory midbrain implant: a new auditory prosthesis for neural deafness-concept and device description.  Otol Neurotol. 2006;  27 (6) 838-843
  • 14 Lenarz M, Lim H H, Lenarz T. et al . Auditory midbrain implant: histomorphologic effects of long-term implantation and electric stimulation of a new deep brain stimulation array.  Otol Neurotol. 2007;  28 (8) 1045-1052
  • 15 Lenarz M, Lim H H, Patrick J F, Anderson D J, Lenarz T. Electrophysiological validation of a human prototype auditory midbrain implant in a guinea pig model.  J Assoc Res Otolaryngol. 2006;  7 (4) 383-398
  • 16 Lim H H, Lenarz T, Joseph G. et al . Electrical stimulation of the midbrain for hearing restoration: insight into the functional organization of the human central auditory system.  J Neurosci. 2007;  27 (49) 13 541-13 551
  • 17 Lim H H, Lenarz T, Joseph G. et al . Effects of phase duration and pulse rate on loudness and pitch percepts in the first auditory midbrain implant patients: Comparison to cochlear implant and auditory brainstem implant results.  Neuroscience. 2008;  154 (1) 370-380
  • 18 O'Donoghue G M, Nikolopoulos T P. Minimal access surgery for pediatric cochlear implantation.  Otol Neurotol. 2002;  23 (6) 891-894
  • 19 Ray J, Gibson W, Sanli H. Surgical complications of 844 consecutive cochlear implantations and observations on large versus small incisions.  Cochlear Implants Int. 2004;  5 (3) 87-95
  • 20 Bajaj Y, Wyatt M, Hartley B. Small postaural incision for paediatric cochlear implantation.  Cochlear Implants Int. 2005;  6 (2) 77-84
  • 21 Pau H W, Sievert U, Graumüller S, Wild E. Incisions for cochlear implant flaps and superficial skin temperature. Skin temperature/blood circulation in CI flaps.  Otolaryngol Pol. 2004;  58 (4) 713-719
  • 22 Müller J, Geyer G, Helms J. Ionomerzement in der Cochlear-Implant-Chirurgie.  Laryngo-Rhino-Otologie. 1993;  72 (1) 36-38
  • 23 Müller J, Schön F, Helms J. Sichere Fixierung von Cochlear-Implant-Elektrodenträgern bei Kindern und Erwachsenen – erste Erfahrungen mit einem neuen Titan-Clip.  Laryngo-Rhino-Otologie. 1998;  77 (4) 238-240
  • 24 Lee D J, Driver M. Cochlear implant fixation using titanium screws.  Laryngoscope. 2005;  115 (5) 910-911
  • 25 Holtkamp V. Cochlea Implantate unter Stoßbelastung – Auswertung von Unfallszenarien, Ermittlung von Beanspruchungsgrenzen und Entwicklung eines standardisierbaren Prüfverfahrens. Dissertation. 2004
  • 26 Battmer R D, O'Donoghue G M, Lenarz T. A multicenter study of device failure in European cochlear implant centers.  Ear Hear. 2007;  28 (2 Suppl) 95S-99S
  • 27 Kha H N, Chen B K, Clark G M, Jones R. Stiffness properties for Nucleus standard straight and contour electrode arrays.  Med Eng Phys. 2004;  26 (8) 677-685
  • 28 Lim Y S, Park S I, Kim Y H, Oh S H, Kim S J. Three-dimensional analysis of electrode behavior in a human cochlear model.  Med Eng Phys. 2005;  27(8) 695-703
  • 29 Rebscher S J, Heilmann M, Bruszewski W. et al . Strategies to improve electrode positioning and safety in cochlear implants.  IEEE Trans Biomed Eng. 1999;  46 (3) 340-352
  • 30 Rebscher S J, Hetherington A, Bonham B. et al . Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion.  J Rehabil Res Dev. 2008;  45 (5) 731-747
  • 31 Kha H N, Chen B K. Determination of frictional conditions between electrode array and endosteum lining for use in cochlear implant models.  J Biomech. 2006;  39 (9) 1752-1756
  • 32 Kha H N, Chen B K, Clark G M. 3D finite element analyses of insertion of the Nucleus standard straight and the Contour electrode arrays into the human cochlea.  J Biomech. 2007;  40 (12) 2796-2805
  • 33 Pau H W, Just T, Dommerich S, Behrend D. Temporal bone investigations on landmarks for conventional or endosteal insertion of cochlear electrodes.  Acta Otolaryngol. 2007;  127 (9) 920-926
  • 34 Pau H W, Just T, Lehnhardt E, Hessel H, Behrend D. An “endosteal electrode” for cochlear implantation in cases with residual hearing? Feasibility study: preliminary temporal bone experiments.  Otol Neurotol. 2005;  26 (3) 448-454
  • 35 Abbasi F, Mirzadeh H, Simjoo M. Hydrophilic interpenetrating polymer networks of poly(dimethyl siloxane) (PDMS) as biomaterial for cochlear implants.  J Biomater Sci Polym Ed. 2006;  17 (3) 341-355
  • 36 Seldon H L, Dahm M C, Clark G M, Crowe S. Silastic with polyacrylic acid filler: swelling properties, biocompatibility and potential use in cochlear implants.  Biomaterials. 1994;  15 (14) 1161-1169
  • 37 Tykocinski M, Cowan R S. Poly-vinyl-alcohol (PVA) coating of cochlear implant electrode arrays: an in-vivo biosafety study.  Cochlear Implants Int. 2005;  6 (1) 16-30
  • 38 Kim C S, Chang S O, Lee H J. et al . Cochlear implantation in patients with a history of chronic otitis media.  Acta Otolaryngol. 2004;  124 (9) 1033-1038
  • 39 Issa T K, Bahgat M A, Linthicum Jr F H. Tissue reaction to prosthetic materials in human temporal bones.  Am J Otol. 1983;  5 (1) 40-43
  • 40 Clark G M, Pyman B C, Webb R L, Bailey Q E, Shepherd R K. Surgery for an improved multiple-channel cochlear implant.  Ann Otol Rhinol Laryngol. 1984;  93 (3 Pt 1) 204-207
  • 41 Franz B, Clark G M, Bloom D M. Permeability of the implanted round window membrane in the cat.  Acta Otolaryngol (Stockh). 1984;  410 17-23
  • 42 Clark G M, Shepherd R K, Franz B, Bloom D. Intraocular electrode implantation. Round window membrane sealing procedures and permeability studies.  Acta Otolaryngol Suppl. 1984;  410 1-23
  • 43 Dahm M C, Clark G M, Franz B K. et al . Cochlear implantation in children: labyrinthitis following pneumococcal otitis media in unimplanted and implanted cat cochleas.  Acta Otolaryngol. 1994;  114 (6) 620-625
  • 44 Nadol Jr J B, Eddington D K. Histologic evaluation of the tissue seal and biologic response around cochlear implant electrodes in the human.  Otol Neurotol. 2004;  25 257-262
  • 45 Hyland M, Mailley S, Savanidis C, McLaughlin J, McAdams E. Thin film platinum and iridium oxide coatings applied to gold/flexible polymers for functional electrical stimulation electrodes. Proceedings of the 5th Annual Conference of the International Functional Electrical Stimulation Society 2000. 
  • 46 Paasche G, Bockel F, Tasche C, Lesinski-Schiedat A, Lenarz T. Changes of postoperative impedances in cochlear implant patients: the short-term effects of modified electrode surfaces and intracochlear corticosteroids.  Otol Neurotol. 2006;  27 (5) 639-647
  • 47 Clark G M, Shepherd R K, Franz B K. et al . The histopathology of the human temporal bone and auditory central nervous system following cochlear implantation in a patient. Correlation with psychophysics and speech perception results.  Acta Otolaryngol Suppl. 1988;  448 1-65
  • 48 Clark G. Cochlear Implants: Fundamentals and applications. New York; Springer 2003: 171
  • 49 Brummer S B, McHardy J, Turner M J. Electrical stimulation with Pt electrodes: Trace analysis for dissolved platinum and other dissolved electrochemical products.  Brain Behav Evol. 1977;  14 (1 – 2) 10-22
  • 50 Black R C, Hannaker P. Dissolution of smooth platinum electrodes in biological fluids.  Appl Neurophysiol. 1980;  42 (6) 366-374
  • 51 Maurer J, Marangos N, Ziegler E. Reliability of cochlear implants.  Otolaryngol Head Neck Surg. 2005;  132 (5) 746-750
  • 52 Luria L W. The role of medical grade silicones in surgery and its topical applications.  Oper Tech Plastic Reconstr Surg. 2002;  9 67-74
  • 53 Malick M H, Carr J A. Flexible elastomer molds in burn scar control.  Am J Occup Ther. 1980;  34 (9) 603-608
  • 54 Rosato D V. Polymers, processes and properties of medical plastics: including markets and applications. In: Szycher M, Hrsg Biocompatible Polymers, Metals, and Composites. Lancaster PA; Technomic Publ 1983: 1019-1067
  • 55 Swanson J W, Lebeau J E. The effect of implantation on the physical properties of silicone rubber.  J Biomed Mater Res. 1974;  8 (6) 357-367
  • 56 Dolezel B, Adamiacuterovaacute L, Vondraacutecek P, Naacuteprstek Z. In vivo degradation of polymers. II. Change of mechanical properties and cross-link density in silicone rubber pacemaker lead insulations during long-term implantation in the human body.  Biomaterials. 1989;  10 (6) 387-392
  • 57 Leslie L J, Jenkins M J, Shepherd D E, Kukureka S N. The effect of the environment on the mechanical properties of medical grade silicones.  J Biomed Mater Res B Appl Biomater. 2008;  86B (2) 460-465
  • 58 Robblee L S, Sweeney J D. Bioelectrodes. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Hrsg Biomaterials Science. London; Academic Press Ltd 1996: 371-375
  • 59 Brummer S B, Turner M J. Electrical stimulation of the nervous system: The principle of safe charge injection with noble metal electrodes.  Bioelectrochemistry and Bioenergetics. 1975;  2 (1) 13-25
  • 60 Clark G M, Tong Y C, Patrick J F. et al . A multi-channel hearing prosthesis for profound-to-total hearing loss.  J Med Eng Technol. 1984;  8 (1) 3-8
  • 61 Puri S, Dornhoffer J L, North P E. Contact dermatitis to silicone after cochlear implantation.  Laryngoscope. 2005;  115 (10) 1760-1762
  • 62 Kunda L D, Stidham K R, Inserra M M. et al . Silicone allergy: A new cause for cochlear implant extrusion and its management.  Otol Neurotol. 2006;  27 (8) 1078-1082
  • 63 Migirov L, Dagan E, Kronenberg J. Surgical and medical complications in different cochlear implant devices.  Acta Otolaryngol. 2008;  Sep 1 [Epub ahead of print] 1-4
  • 64 Stratigouleas E D, Perry B P, King S M, Syms 3rd C A. Complication rate of minimally invasive cochlear implantation.  Otolaryngol Head Neck Surg. 2006;  135 (3) 383-386
  • 65 Li P M, Somdas M A, Eddington D K, Nadol J B . Analysis of intracochlear new bone and fibrous tissue formation in human subjects with cochlear implants.  Ann Otol Rhinol Laryngol. 2007;  116 (10) 731-738
  • 66 Xu J, Shepherd R K, Millard R E, Clark G M. Chronic electrical stimulation of the auditory nerve at high stimulus rates: A physiological and histopathological study.  Hear Res. 1997;  105 1-29
  • 67 Duan Y Y, Clark G M, Cowan R S. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo.  Biomaterials. 2004;  25 (17) 3813-3828
  • 68 Peeters S, van Immerseel L, Zarowski A. et al . New developments in cochlear implants.  Acta oto-rhino-laryngologica belg. 1998;  52 115-127
  • 69 De Ceulaer G, Johnson S, Yperman M. et al . Long-term evaluation of the effect of intra-cochlear steroid deposition on electrode impedance in cochlear implant patients.  Otol Neurotol. 2003;  24 769-774
  • 70 Rivas A, Marlowe A L, Chinnici J E, Niparko J K, Francis H W. Revision cochlear implantation surgery in adults: indications and results.  Otol Neurotol. 2008;  29 (5) 639-648
  • 71 Rühl S, Poyda K, Lesinski-Schiedat A, Gärtner L, Lenarz T. Reimplantation bei CI-Patienten seit 1985.  GMS Curr Posters Otorhinolaryngol Head Neck Surg. 2008;  4 Doc16
  • 72 Burton M J, Shepherd R K, Clark G M. Cochlear histopathologic characteristics following long-term implantation. Safety studies in the young monkey.  Arch Otolaryngol Head Neck Surg. 1996;  122 (10) 1097-1104
  • 73 Gray R F, Baguley D M, Harries M L, Court I, Lynch C. Profound deafness treated by the Ineraid multichannel intracochlear implant.  Journal of Laryngology and Otology. 1993;  107 (8) 673-680
  • 74 Hall-Stoodley L, Hu F Z, Gieseke A. et al . Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media.  JAMA. 2006;  296 (2) 202-211
  • 75 Franz B K, Clark G M, Bloom D M. Effect of experimentally induced otitis media on cochlear implants.  Ann Otol Rhinol Laryngol. 1987;  96 (2 Pt 1) 174-177
  • 76 El-Kashlan H K, Telian S A. Cochlear implantation in the chronically diseased ear.  Curr Opin Otolaryngol Head Neck Surg. 2004;  12 (5) 384-386
  • 77 Antonelli P J, Lee J C, Burne R A. Bacterial biofilms may contribute to persistent cochlear implant infection.  Otol Neurotol. 2004;  25 (6) 953-957
  • 78 Cunningham C D , Slattery W H , Luxford W M. Postoperative infection in cochlear implant patients.  Otolaryngol Head Neck Surg. 2004;  131 109-114
  • 79 Pawlowski K S, Wawro D, Roland P S. Bacterial biofilm formation on a human cochlear implant.  Otol Neurotol. 2005;  26 (5) 972-975
  • 80 Hopfenspirger M T, Levine S C, Rimell F L. Infectious complications in pediatric cochlear implants.  Laryngoscope. 2007;  117 (10) 1825-1829
  • 81 Stewart P S, Costerton J W. Antibiotic resistance of bacteria in biofilms.  Lancet. 2001;  358 135-138
  • 82 Loeffler K A, Johnson T A, Burne R A, Antonelli P J. Biofilm formation in an in vitro model of cochlear implants with removable magnets.  Otolaryngol Head Neck Surg. 2007;  136 (4) 583-588
  • 83 Cristobal R, Edmiston Jr C E, Runge-Samuelson C L. et al . Fungal biofilm formation on cochlear implant hardware after antibiotic-induced fungal overgrowth within the middle ear.  Pediatr Infect Dis J. 2004;  23 (8) 774-778
  • 84 Reefhuis J, Honein M A, Whitney C G. et al . Risk of Bacterial Meningitis in Children with Cochlear Implants.  N Engl J Med. 2003;  349 (5) 435-445
  • 85 Arnold W, Bredberg G, Gstöttner W. et al . Meningitis following cochlear implantation: pathomechanisms, clinical symptoms, conservative and surgical treatments.  ORL J Otorhinolaryngol Relat Spec. 2002;  64 (6) 382-389
  • 86 Wei B P, Shepherd R K, Robins-Browne R M. et al . Threshold shift: effects of cochlear implantation on the risk of pneumococcal meningitis.  Otolaryngol Head Neck Surg. 2007;  136 (4) 589-596
  • 87 Wei B P, Shepherd R K, Robins-Browne R M. et al . Effects of Inner Ear Trauma on the Risk of Pneumococcal Meningitis.  Arch Otolaryngol Head Neck Surg. 2007;  133 (3) 250-259
  • 88 Tykocinski M, Cohen L T, Pyman B C. et al . Comparison of electrode position in the human cochlea using various perimodiolar electrode arrays.  American Journal of Otology. 2000;  21 205-211
  • 89 Clark G M, Pyman B C, Pavillard R E. A protocol for the prevention of infection in cochlear implant surgery.  J Laryngol Otol. 1980;  94 (12) 1377-1386
  • 90 Puls R, Hoene A, Kuehn J P. et al . Percutaneous treatment of infrarenal aortic aneurysm with a polytetrafluoroethylene-covered nitinol stent-graft via a 10-F introducer sheath.  J Vasc Interv Radiol. 2008;  19 (9) 1378-1381
  • 91 Kerdjoudj H, Moby V, Berthelemy N. et al . The ideal small arterial substitute: Role of cell seeding and tissue engineering.  Clin Hemorheol Microcirc. 2007;  37 (1 – 2) 89-98
  • 92 Gordon B M, Fishbein M C, Levi D S. Polytetrafluoroethylene-covered stents in the venous and arterial system: angiographic and pathologic findings in a swine model.  Cardiovasc Pathol. 2008;  17 (4) 206-211
  • 93 Falcão S C, Coelho A R, Evêncio Neto J. Biomechanical evaluation of microbial cellulose (Zoogloea sp.) and expanded polytetrafluoroethylene membranes as implants in repair of produced abdominal wall defects in rats.  Acta Cir Bras. 2008;  23 (2) 184-191
  • 94 Chiang C K, Druy M A, Gau S C. et al . Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x.  J Am Chem Soc. 1978;  100 1013-1015
  • 95 Skotheim T A. Handbook of Conducting Polymers Vol. 1 & 2. New York; Marcel Dekker 1986
  • 96 Rehahn M. Elektrisch leitfähige Kunststoffe.  Chem unserer Zeit. 2003;  37 18-30
  • 97 Ferrer-Anglada N, Gomis V, El-Hachemi Z. et al . Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu.  Phys Stat Sol. 2006;  203 1082-1087
  • 98 Lee J Y, Lee J W, Schmidt C E. Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole.  J R Soc Interface. 2008;  Dec 9. [Epub ehead of print]
  • 99 Haggerty H S, Lusted H S. Histological reaction to polyimide films in the cochlea.  Acta Otolaryngol. 1989;  107 (1 – 2) 13-22
  • 100 Blach-Watson J A, Watson G S, Brown C L, Myhra S. UV-patterning of polyimide: Differentiation and characterization of surface chemistry and structure.  Appl Surf Sci. 2004;  235 164-169
  • 101 Nguyen L TT, Nguyen H N, La T HT. Synthesis and characterization of a photosensitive polyimide precursor and its photocuring behavior for lithography applications.  Optical Mater. 2007;  29 610-618
  • 102 Jiang X, Li H, Wang H, Shi Z, Yin J. A novel negative photoinitiator-free photosensitive polyimide.  Polymer. 2006;  47 2942-2945
  • 103 Hasegawa M, Horie K. Photophysics, photochemistry, and optical properties of polyimides.  Prog Polym Sci. 2001;  26 259-335
  • 104 Lee K K, He J, Singh A. et al . Polyimide-based intracortical neural implant with improved structural stiffness.  J Micromech Microeng. 2004;  14 32-37
  • 105 Yeager J D, Phillips D J, Rector D M, Bahr D F. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats.  J Neurosci Methods. 2008;  173 (2) 279-285
  • 106 Besch D, Sachs H, Szurman P. et al . Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients.  Br J Ophthalmol. 2008;  92 (10) 1361-1368
  • 107 Polikov V S, Tresco P A, Reichert W M. Response of brain tissue to chronically implanted neural electrodes.  J Neurosci Methods. 2005;  148 1-18
  • 108 Rousche P J, Pellinen D S, Pivin Jr D P. et al . Flexible polyimide-based intracortical electrode arrays with bioactive capability.  IEEE Trans Biomed Eng. 2001;  48 361-371
  • 109 Kim Y-T, Hitchcock R W, Bridge M J, Tresco P A. Chronic response of adult rat brain tissue to implants anchored to the skull.  Biomaterials. 2004;  25 2229-2237
  • 110 Vanden Bulcke M, Baert K, Beyne E. et al . Active electrode arrays by chip embedding in a flexible silicone carrier.  Conf Proc IEEE Eng Med Biol Soc. 2006;  1 2811-2815
  • 111 Schwahn H N, Gekeler F, Kohler K. et al . Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit.  Graefes Arch Clin Exp Ophthalmol. 2001;  239 (12) 961-967
  • 112 Brors D, Aletsee C, Schwager K. et al . Interaction of spiral ganglion neuron processes with alloplastic materials in vitro (1).  Hear Res. 2002;  167 (1 – 2) 110-121
  • 113 Reich U, Mueller P P, Fadeeva E. et al . Differential fine-tuning of cochlear implant material-cell interactions by femtosecond laser microstructuring.  J Biomed Mater Res B Appl Biomater. 2008;  87 (1) 146-153
  • 114 Reich U, Reuter G, Fadeeva E. et al . Gerichtetes Wachstum neuronaler Zellen auf mikrostrukturiertem Implantatmaterial.  Biomaterialien. 2007;  8 (3) 162
  • 115 Wolfram T, Spatz J P, Burgess R W. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules.  BMC Cell Biol. 2008; Dec 4;  9 (1) 64. [Epub ahead of print]
  • 116 Selhuber-Unkel C, Loacutepez-Garciacutea M, Kessler H, Spatz J P. Cooperativity in adhesion cluster formation during initial cell adhesion.  Biophys J. 2008;  95 (11) 5424-5431
  • 117 Cavalcanti-Adam E A, Volberg T, Micoulet A. et al . Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands.  Biophys J. 2007;  92 (8) 2964-2974
  • 118 Larsson C, Emanuelsson L, Thomsen P. et al . Bone response to surface modified titanium implants – studies on the tissue response after 1 year to machined and electropolished implants with different oxide thicknesses.  J Mater Sci Mater Med. 1997;  8 (12) 721-729
  • 119 Le Gueacutehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration.  Dental Materials. 2006;  23 (7) 844-854
  • 120 Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P. Effect of grooved titanium substratum on human osteoblastic cell growth.  J Biomed Mater Res. 2002;  60 529-540
  • 121 Zou J, Asukas J, Inha T. et al . Biocompatibility of different biopolymers after being implanted into the rat cochlea.  Otol Neurotol. 2008;  29 (5) 714-719
  • 122 Ryan A F, Wittig J, Evans A, Dazert S, Mullen L. Environmental micro-patterning for the study of spiral ganglion neurite guidance.  Audiol Neurootol. 2006;  11 (2) 134-143
  • 123 Vasita R, Katti D S. Growth factor-delivery systems for tissue engineering: a materials perspective.  Expert Rev Med Devices. 2006;  3 (1) 29-47
  • 124 Sachse A, Wagner A, Keller M. et al . Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep.  Bone. 2005;  37 (5) 699-710
  • 125 Seeherman H, Wozney J M. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration.  Cytokine Growth Factor Rev. 2005;  16 (3) 329-345
  • 126 Gunn J, Cumberland D. Stent coatings and local drug delivery: State of the art.  European Heart Journal. 1999;  20 1693-1700
  • 127 Stone G W, Moses J W, Ellis S G. et al . Safety and efficacy of sirolimus- and paclitaxeleluting coronary stents.  N Engl J Med. 2007;  356 998-1008
  • 128 Silber S, Borggrefe M, Böhm M. et al . Positionspapier der Deutschen Gesellschaft für Kardiologie (DGK) zur Wirksamkeit und Sicherheit von Medikamente freisetzenden Koronarstents (DES).  Der Kardiologe. 2007;  1 84-111
  • 129 Li H, Corrales C E, Edge A, Heller S. Stem cells as therapy for hearing loss.  Trends Mol Med. 2004;  10 (7) 309-315
  • 130 Senn P, Oshima K, Teo D, Grimm C, Heller S. Robust postmortem survival of murine vestibular and cochlear stem cells.  J Assoc Res Otolaryngol. 2007;  8 (2) 194-204
  • 131 Martinez-Monedero R, Oshima K, Heller S, Edge A S. The potential role of endogenous stem cells in regeneration of the inner ear.  Hear Res. 2007;  227 (1 – 2) 48-52
  • 132 Senn P, Heller S. Stem-cell-based approaches for treating inner ear diseases.  HNO. 2008;  56 (1) 21-26
  • 133 Juhn A, Rybak L. Labyrinthine barriers and cochlear homeostasis.  Acta Otolaryngol. 1981;  91 529-534
  • 134 Juhn S. Barrier systems in the inner ear.  Acta Otolaryngol Suppl. 1988;  458 79-83
  • 135 Swan E E, Mescher M J, Sewell W F, Tao S L, Borenstein J T. Inner ear drug delivery for auditory applications.  Adv Drug Deliv Rev. 2008;  60 (15) 1583-1599
  • 136 Garnham C, Reetz G, Jolly C. et al . Drug delivery to the cochlea after implantation: consideration of the risk factors.  Cochlear Implants Int. 2006;  6 12-14
  • 137 Pettingill L N, Richardson R T, Wise A K, O'Leary S, Shepherd R K. Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system.  IEEE Trans Biomed Eng. 2007;  54 1-5
  • 138 Duan M L, Ulfendahl M, Laurell G. et al . Protection and treatment of sensorineural hearing disorders caused by exogeous factors: experimental findings and potential clinical application.  Hear Res. 2002;  169 169-178
  • 139 Hochmair I, Nopp P, Jolly C N. et al . Med-el cochlear implants: state of the art and a glimpse into the future.  Trends Amplif. 2006;  10 201-220
  • 140 Paasche G, Gibson P, Averbeck T. et al . Technical report: modification of a cochlear implant electrode for drug delivery to the inner ear.  Otol Neurotol. 2003;  24 222-227
  • 141 Stöver T, Paasche G, Lenarz T. et al . Development of a drug delivery device: using the femtosecond laser to modify cochlear implant electrodes.  Cochlear Implants Int. 2007;  8 38-52
  • 142 Huang C Q, Tykocinski M, Stathopoulos D, Cowan R. Effects of steroids and lubricants on electrical impedance and tissue response following cochlear implantation.  Cochlear Implants Int. 2007;  8 (3) 123-147
  • 143 Vivero R J, Joseph D E, Angeli S. et al . Dexamethasone base conserves hearing from electrode trauma-induced hearing loss.  Laryngoscope. 2008;  118 (11) 2028-2035
  • 144 Fetoni A R, Ferraresi A, Greca C L. et al . Antioxidant protection against acoustic trauma by coadministration of idebenone and vitamin E.  Neuroreport. 2008;  19 (3) 277-281
  • 145 Kim S J, Jeong H J, Myung N Y. et al . The protective mechanism of antioxidants in cadmium-induced ototoxicity in vitro and in vivo.  Environ Health Perspect. 2008;  116 (7) 854-862
  • 146 Maruyama J, Miller J M, Ulfendahl M. Glial cell line-derived neurotrophic factor and antioxidants preserve the electrical responsiveness of the spiral ganglion neurons after experimentally induced deafness.  Neurobiol Dis. 2008;  29 (1) 14-21
  • 147 Maruyama J, Yamagata T, Ulfendahl M. et al . Effects of antioxidants on auditory nerve function and survival in deafened guinea pigs.  Neurobiol Dis. 2007;  25 (2) 309-318
  • 148 Schindler R A, Gladstone H B, Scott N. et al . Enhanced preservation of the auditory nerve following cochlear perfusion with nerve growth factors.  Am J Otol. 1995;  16 (3) 304-309
  • 149 Ernfors P, Duan M L, ElShamy W M, Canlon B. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3.  Nat Med. 1996;  2 (4) 463-467
  • 150 Staecker H, Kopke R, Malgrange B. et al . NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells.  Neuroreport. 1996;  7 (4) 889-894
  • 151 Miller J M, Chi D H, O'Keeffe L J. et al . Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss.  Int J Dev Neurosci. 1997;  15 (4 – 5) 631-643
  • 152 Ylikoski J, Pirvola U, Virkkala J. et al . Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma.  Hear Res. 1998;  124 (1 – 2) 17-26
  • 153 Kuang R, Hever G, Zajic G. et al . Glial cell line-derived neurotrophic factor. Potential for otoprotection.  Ann N Y Acad Sci. 1999;  884 270-291
  • 154 Scheper V, Paasche G, Miller J M. et al . Effects of delayed treatment with combined GDNF and continuous electrical stimulation on spiral ganglion cell survival in deafened guinea pigs.  J Neurosci Res. 2008;  Dec 15. [Epub ahead of print]
  • 155 Yagi M, Kanzaki S, Kawamoto K. et al . Spiral ganglion neurons are protected from degeneration by GDNF gene therapy.  J Assoc Res Otolaryngol. 2000;  1 (4) 315-325
  • 156 Shoji F, Miller A L, Mitchell A. et al . Differential protective effects of neurotrophins in the attenuation of noise-induced hair cell loss.  Hear Res. 2000;  146 (1 – 2) 134-142
  • 157 Shoji F, Yamasoba T, Magal E. et al . Glial cell line-derived neurotrophic factor has a dose dependent influence on noise-induced hearing loss in the guinea pig cochlea.  Hear Res. 2000;  142 (1 – 2) 41-55
  • 158 Shinohara T, Bredberg G, Ulfendahl M. et al . Neurotrophic factor intervention restores auditory function in deafened animals.  Proc Natl Acad Sci USA. 2002;  99 (3) 1657-1660
  • 159 Kanzaki S, Stover T, Kawamoto K. et al . Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation.  J Comp Neurol. 2002;  454 (3) 350-360
  • 160 Nakaizumi T, Kawamoto K, Minoda R, Raphael Y. Adenovirus-mediated expression of brain-derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage.  Audiol Neurootol. 2004;  9 (3) 135-143
  • 161 Gillespie L N, Clark G M, Bartlett P F, Marzella P L. BDNF-induced survival of auditory neurons in vivo: Cessation of treatment leads to accelerated loss of survival effects.  J Neurosci Res. 2003;  71 (6) 785-790
  • 162 Wright T J, Mansour S L. FGF signaling in ear development and innervation.  Curr Top Dev Biol. 2003;  57 225-259
  • 163 Bibel M, Barde Y A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system.  Genes Dev. 2000;  14 (23) 2919-2937
  • 164 Pirvola U, Ylikoski J. Neurotrophic factors during inner ear development.  Curr Top Dev Biol. 2003;  57 207-223
  • 165 Chao M V, Bothwell M. Neurotrophins: to cleave or not to cleave.  Neuron. 2002;  33 (1) 9-12
  • 166 Fritzsch B, Tessarollo L, Coppola E, Reichardt L F. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance.  Prog Brain Res. 2004;  146 265-278
  • 167 Roehm P C, Hansen M R. Strategies to preserve or regenerate spiral ganglion neurons.  Curr Opin Otolaryngol Head Neck Surg. 2005;  13 (5) 294-300
  • 168 Baloh R H, Gorodinsky A, Golden J P. et al . GFRalpha3 is an orphan member of the GDNF/neurturin/persephin receptor family.  Proc Natl Acad Sci USA. 1998;  95 (10) 5801-5806
  • 169 Nishino J, Mochida K, Ohfuji Y. et al . GFRalpha3, a component of the artemin receptor, is required for migration and survival of the superior cervical ganglion.  Neuron. 1999;  23 (4) 725-736
  • 170 Enomoto H, Crawford P A, Gorodinsky A. et al . RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons.  Development. 2001;  128 (20) 3963-3974
  • 171 Russo V C, Schütt B S, Andaloro E. et al . Insulin-like growth factor binding protein-2 binding to extracellular matrix plays a critical role in neuroblastoma cell proliferation, migration, and invasion.  Endocrinology. 2005;  146 (10) 4445-4455
  • 172 Camarero G, Leon Y, Gorospe I. et al . Insulin-like growth factor 1 is required for survival of transit-amplifying neuroblasts and differentiation of otic neurons.  Dev Biol. 2003;  262 (2) 242-253
  • 173 Böttner M, Krieglstein K, Unsicker K. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions.  J Neurochem.. 2000;  75 (6) 2227-2240
  • 174 Assoian R K, Komoriya A, Meyers C A, Miller D M, Sporn M B. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization.  J Biol Chem. 1983;  258 (11) 7155-7160
  • 175 McLennan I S, Koishi K. The transforming growth factor-betas: multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells.  Int J Dev Biol. 2002;  46 (4) 559-567
  • 176 Weerda H G, Gamberger T I, Siegner A, Gjuric M, Tamm E R. Effects of transforming growth factor-beta1 and basic fibroblast growth factor on proliferation of cell cultures derived from human vestibular nerve schwannoma.  Acta Otolaryngol. 1998;  118 (3) 337-343
  • 177 Diensthuber M, Brandis A, Lenarz T, Stöver T. Co-expression of transforming growth factor-beta1 and glial cell line-derived neurotrophic factor in vestibular schwannoma.  Otol Neurotol. 2004;  25 (3) 359-365
  • 178 Atar O, Avraham K B. Therapeutics of hearing loss: expectations vs reality.  Drug Discov Today. 2005;  10 (19) 1323-1330
  • 179 Holley M C. Keynote review: The auditory system, hearing loss and potential targets for drug development.  Drug Discov Today. 2005;  10 (19) 1269-1282
  • 180 Bowers W J, Chen X, Guo H. et al . Neurotrophin-3 transduction attenuates cisplatin spiral ganglion neuron ototoxicity in the cochlea.  Mol Ther. 2002;  6 (1) 12-18
  • 181 Chen X, Frisina R D, Bowers W J. et al . HSV amplicon-mediated neurotrophin-3 expression protects murine spiral ganglion neurons from cisplatin-induced damage.  Mol Ther. 2001;  3 (6) 958-963
  • 182 Ghezzi P, Brines M. Erythropoietin as an antiapoptotic, tissue-protective cytokine.  Cell Death Differ. 2004;  11 (Suppl 1) 37-44
  • 183 Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system.  Nat Rev Neurosci. 2005;  6 484-494
  • 184 Krantz S B. Erythropoietin.  Blood. 1991;  77 (3) 419-434
  • 185 Arishima Y, Setogushi T, Yamaura I, Yone K, Komiya S. Preventive effect of erythropoietin on spinal cord cells following acute traumatic injury in rats.  SPINE. 2006;  21 2432-2438
  • 186 Viviani B, Bartesaghi S, Corsini E. et al . Erythropoietin protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor.  J Neurochem. 2005;  93 (2) 412-421
  • 187 Berkingali N, Warnecke A, Gomes P. et al . Neurite outgrowth on cultured spiral ganglion neurons induced by erythropoietin.  Hear Res. 2008;  243 (1 – 2) 21-6
  • 188 Caye-Thomasen P, Wagner N, Lidegaard Frederiksen B. et al . Erythropoietin and erythropoietin receptor expression in the guinea pig inner ear.  Hear Res. 2005;  203 (1 – 2) 21-27
  • 189 Monge A, Nagy I, Bonabi S. et al . The effect of erythropoietin on gentamicin-induced auditory hair cell loss.  Laryngoscope. 2006;  116 (2) 312-316
  • 190 Andreeva N, Nyamaa A, Haupt H, Gross J, Mazurek B. Recombinant human erythropoietin prevents ischemia-induced apoptosis and necrosis in explant cultures of the rat organ of Corti.  Neurosci Lett. 2006;  396 (2) 86-90
  • 191 Malgrange B, Lefebvre P, Van de Water T R. et al . Effects of neurotrophins on early auditory neurones in cell culture.  Neuroreport. 1996;  7 (4) 913-917
  • 192 Hegarty J L, Kay A R, Green S H. Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+]i within a set range.  J Neurosci. 1997;  17 1959-1970
  • 193 Gillespie L N, Clark G M, Bartlett P F, Marzella P L. LIF is more potent than BDNF in promoting neurite outgrowth of mammalian auditory neurons in vitro.  Neuroreport. 2001;  12 275-279
  • 194 Mou K, Hunsberger C L, Cleary J M, Davis R L. Synergistic effects of BDNF and NT-3 on postnatal spiral ganglion neurons.  J Comp Neurol. 1997;  386 529-539
  • 195 Marzella P L, Gillespie L N, Clark G M, Bartlett P F, Kilpatrick T J. The neurotrophins act synergistically with LIF and members of the TGF-beta superfamily to promote the survival of spiral ganglia neurons in vitro.  Hear Res. 1999;  138 73-80
  • 196 Wefstaedt P, Scheper V, Lenarz T, Stöver T. Brain-derived neurotrophic factor/glial cell line-derived neurotrophic factor survival effects on auditory neurons are not limited by dexamethasone.  Neuroreport. 2005;  16 (18) 2011-2014
  • 197 Qun L X, Pirvola U, Saarma M, Ylikoski J. Neurotrophic factors in the auditory periphery.  Ann N Y Acad Sci. 1999;  884 292-304
  • 198 Wefstaedt P. Dissertation: Untersuchungen zu trophischen und protektiven Effekten neurotropher Faktoren (Brain-derived neurotrophic factor, Glial cell line-derived neurotrophic factor), des Glukocorticoids Dexamethason sowie elektrischer Stimulation auf kultivierte Spiralganglienzellen der Ratte. (Aus dem Institut für Zoologie der Tierärztlichen Hochschule Hannover und der Klinik für Hals-Nasen-Ohren-Heilkunde der Medizinischen Hochschule Hannover.) 2006
  • 199 Hartnick C J, Staecker H, Malgrange B. et al . Neurotrophic effects of BDNF and CNTF, alone and in combination, on postnatal day 5 rat acoustic ganglion neurons.  J Neurobiol. 1996;  30 246-254
  • 200 Shah S B, Gladstone H B, Williams H, Hradek G T, Schindler R A. An extended study: protective effects of nerve growth factor in neomycin-induced auditory neural degeneration.  Am J Otol. 1995;  16 (3) 310-314
  • 201 Gillespie L N, Clark G M, Marzella P L. Delayed neurotrophin treatment supports auditory neuron survival in deaf guinea pigs.  Neuroreport. 2004;  15 (7) 1121-1125
  • 202 Gillespie L N, Shepherd R K. Clinical application of neurotrophic factors: the potential for primary auditory neuron protection.  Eur J Neurosci. 2005;  22 (9) 2123-2133
  • 203 Scheper V. Dissertation: Elektrophysiologische und histologische Untersuchungen zum protektiven Effekt von Glial cell line-derived neurotrophic factor, Brain-derived neurotrophic factor, Dexamethason und Elektrostimulation auf Spiralganglienzellen ertaubter Meerschweinchen. (Aus dem Institut für Zoologie der Tierärztlichen Hochschule Hannover und der Klinik für Hals-Nasen-Ohren-Heilkunde der Medizinischen Hochschule Hannover.) 2007
  • 204 Miller J M, Le Prell C G, Prieskorn D M. et al . Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor.  J Neurosci Res. 2007;  85 (9) 1959-1969
  • 205 Wise A K, Richardson R, Hardman J, Clark G, O'Leary S. Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3.  J Comp Neurol. 2005;  487 (2) 147-165
  • 206 Yamagata T, Miller J M, Ulfendahl M. et al . Delayed neurotrophic treatment preserves nerve survival and electrophysiological responsiveness in neomycin-deafened guinea pigs.  J Neurosci Res. 2004;  78 (1) 75-86
  • 207 Shepherd R K, Coco A, Epp S B, Crook J M. Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss.  J Comp Neurol. 2005;  486 (2) 145-158
  • 208 Thorne M, Salt A N, DeMott J E. et al . Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images.  Laryngoscope. 1999;  109 1661-1668
  • 209 Salt A N, Rask-Andersen H. Responses of the endolymphatic sac to perilymphatic injections and withdrawals: evidence for the presence of a one-way valve.  Hear Res. 2004;  191 (1 – 2) 90-100
  • 210 Mynatt R, Hale S A, Gill R M, Plontke S K, Salt A N. Demonstration of a longitudinal concentration gradient along scala tympani by sequential sampling of perilymph from the cochlear apex.  J Assoc Res Otolaryngol. 2006;  7 (2) 182-193
  • 211 Plontke S K, Salt A N. Simulation of application strategies for local drug delivery to the inner ear.  ORL J Otorhinolaryngol Relat Spec. 2006;  68 (6) 386-392
  • 212 Plontke S K, Siedow N, Wegener R, Zenner H P, Salt A N. Cochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model.  Audiol Neurootol. 2007;  12 (1) 37-48
  • 213 Prieskorn D M, Miller J M. Technical report: chronic and acute intracochlear infusion in rodents.  Hear Res. 2000;  140 212-215
  • 214 Paasche G, Bögel L, Leinung M, Lenarz T, Stöver T. Substance distribution in a cochlea model using different pump rates for cochlear implant drug delivery electrode prototypes.  Hear Res. 2006;  212 (1 – 2) 74-82
  • 215 Schierholz J M, Lucas L J, Rump A, Pulverer G. Efficacy of silver-coated medical devices.  J Hosp Infect. 1998;  40 (4) 257-262
  • 216 Nair L S, Laurencin C T. Nanofibers and nanoparticles for orthopaedic surgery applications.  J Bone Joint Surg Am. 2008;  90 (Suppl 1) 128-131
  • 217 Zou J, Saulnier P, Perrier T. et al . Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation.  J Biomed Mater Res B Appl Biomater. 2008;  87 (1) 10-18
  • 218 Tamura T, Kita T, Nakagawa T. et al . Drug delivery to the cochlea using PLGA nanoparticles.  Laryngoscope. 2005;  115 (11) 2000-2005
  • 219 Rejali D, Lee V A, Abrashkin K A, Humayun N, Swiderski D L, Raphael Y. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.  Hear Res. 2007;  228 (1 – 2) 180-187

Prof. Dr. med. Timo Stöver

Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde, Med. Hochschule Hannover

Carl-Neuberg-Straße 1
30625 Hannover

Email: stoever.timo@mh-hannover.de

    >