RSS-Feed abonnieren
DOI: 10.1055/s-0028-1123972
© Georg Thieme Verlag KG Stuttgart · New York
Analogien zwischen Herz- und Atemmuskelinsuffizienz
Bedeutung in der KlinikAnalogy of heart and respiratory muscle failureRelevance to clinical practicePublikationsverlauf
eingereicht: 26.5.2008
akzeptiert: 16.10.2008
Publikationsdatum:
15. Januar 2009 (online)

Zusammenfassung
Herzinsuffizienz ist eine etablierte Diagnose. Weniger bekannt ist eine Atemmuskel- oder Atempumpeninsuffizienz. Sie wird sichtbar in einer Hyperkapnie, die durch eine Hypoventilation entsteht. Das Atmungszentrum stellt diese aktiv ein, damit es zu keiner gefährlichen Überlastung der Muskulatur kommt (hyperkapnisches Versagen). Konsekutiv entwickelt sich durch die Hypoventilation eine Hypoxämie, die für die Leistungslimitierung nicht verantwortlich ist. Davon streng zu trennen ist ein hypoxämisches Versagen, welches vom Lungenparenchym ausgeht. Hier führt die Hypoxämie. Infolge einer meist kompensatorischen Hyperventilation ist der PaCO2 erniedrigt.
Die Herz- wie die Atempumpe stellen sich bei entsprechender chronischer Erkrankung auf eine unvermeidbare Überlastungssituation ein. In beiden Fällen kommt es zur Hypertrophie der Muskulatur. Überschreitet die Belastung die physiologische Regulationsbreite, so gibt es Kompensationsmechanismen, die bei beiden Pumporganen ähnlich sind. Beide Muskeln greifen in Überlastungssituationen auf ihr Muskelglykogen als Energiesubstrat zurück. In Phasen der Erholung (insbesondere im Schlaf) kommt es hier zur Rückspeicherung, die bei der Herzpumpe durch Abfall des Blutdrucks und bei der Atempumpe durch Verstärkung der Hypoventilation mit Zunahme der Hyperkapnie indirekt sichtbar wird.
Da die Hauptfunktion beider Organe der Sauerstofftransport ist und dieser durch die Insuffizienz vor allen Dingen unter Belastungsbedingungen nicht mehr ausreicht, hat der Organismus verschiedene Kompensationsmechanismen entwickelt, um hier gegenzusteuern. Diese reichen von der Änderung der Sauerstoffbindungskurve, über die Expression von Isoenzymen der Atmungsketten, die mit weniger Sauerstoffpartialdruck ATP produzieren können, bis zur Polyglobulie. Medikamentös kann die Entlastung bei der Herzpumpe durch Betablocker, bei der Atempumpe durch Sauerstoff verstärkt werden.
Neuere Therapieverfahren verstärken diese Erholungsphasen. Beim Herzmuskel durch Bypass- oder intravasale Pumpen, bei der Atemmuskulatur durch elektive, meist nicht invasive Beatmung zu Hause. Gerade durch die letztere Maßnahme kommt es hier zu einer erheblichen Leistungszunahme, Verbesserung der Lebensqualität und Reduktion der Mortalität.
Herz- und Atemmuskelinsuffizienz haben viele gemeinsame Parallelen. Bedingt durch die gemeinsame Aufgabe, den Sauerstofftransport zu sichern, sind ihre Funktionen bzw. Kompensationsmechanismen eng gekoppelt.
Summary
Heart failure is an established diagnosis. Respiratory muscle or ventilatory pump failure, however, is less well known. The latter becomes obvious through hypercapnia, caused by hypoventilation. The respiratory centre tunes into hypercapnea in order to prevent the danger of respiratory muscle overload (hypercapnic ventilatory failure). Hypoventilation will consecutively cause hypoxemia but this will not be responsible for performance limitation.
One therefore has to distinguish primary hypoxemia evolving from diseases in the lung parenchyma. Here hypoxemia is the key feature and compensatory hyperventilation usually decreases PaCO2 levels.
The cardiac as well as the respiratory pump adapt to an inevitable burden caused by chronic disease. In either case organ muscle mass will increase. If the burden exceeds the range of possible physiological adaptation, compensatory mechanisms will set in that are similar in both instances. During periods of overload either muscle system is mainly fuelled by muscular glycogen. In the recovery phase (e. g. during sleep) stores are replenished, which can be recognized by down-regulation of the blood pressure in case of the cardiac pumb or by augmentation of hypercapnia through hypoventilation in case of the respiratory pump.
The main function of cardiac and respiratory pump is maintenance of oxygen transport.
The human body has developed certain compensatory mechanisms to adapt to insufficient oxygen supply especially during periods of overload. These mechanisms include shift of the oxygen binding curve, expression of respiratory chain isoenzymes capable of producing ATP at lower partial pressures of oxygen and the development of polyglobulia. Medically or pharmacologically the cardiac pump can be unloaded with beta blockers, the respiratory pump by application of inspired oxygen.
Newer forms of therapy augment the process of recovery. The heart can be supported through bypass surgery or intravascular pump systems, while respiratory muscles may be supported through elective ventilatory support (mainly non-invasive) in the patient’s home. The latter treatment in particular will increase patient endurance and quality of life and decrease mortality.
Heart and respiratory pump failure share many common features. Since both take care of oxygen supply to the body, their function and compensatory mechanisms are closely related and linked
Schlüsselwörter
Herzinsuffizienz - Atemmuskulinsuffizienz - Atempumpe - Hypoxämie - Hyperkapnie
Keywords
heart failure - respiratory muscle failure - breathing pump - hypoxemia - hypercapnia
- 1
Abildgaard U, Aldershvile J, Ring-Larsen H. et al .
Bed rest and increased diuretic
treatment in chronic congestive heart failure.
Eur Heart
J.
1985;
6
1040-1046
MissingFormLabel
- 2
Adamopoulos C, Zannad F, Fay R. et
al .
Ejection fraction and blood pressure are important
and interactive predictors of 4-week mortality in severe acute heart
failure.
Eur J Heart Fail.
2007;
9
935-941
MissingFormLabel
- 3
Aida A, Miyamoto K, Nishimura M. et al .
Prognostic value of hypercapnia in patients
with chronic respiratory failure during long-term oxygen therapy.
Am J Respir Crit Care Med.
1998;
158
188-193
MissingFormLabel
- 4
Antonelli M, Pennisi M A, Montini L.
Clinical review: Noninvasive ventilation in the clinical setting
experience from the past 10 years.
Crit Care.
2005;
9
98-103
MissingFormLabel
- 5
Bégin P, Grassino A.
Chronic alveolar hypoventilation
helps to maintain the inspiratory muscle effort of COPD patients
within sustainable limits.
Chest.
2000;
117
271S-273S
MissingFormLabel
- 6
Bégin P, Grassino A.
Inspiratory muscle
dysfunction and chronic hypercapnia in chronic obstructive pulmonary
disease.
Am Rev Respir Dis.
1991;
143
905-912
MissingFormLabel
- 7
Benditt J, Pollock M, Roa J, Celli B.
Transtracheal delivery of
gas decreases the oxygen cost of breathing.
Am Rev Respir
Dis.
1993;
147
1207-1210
MissingFormLabel
- 8
Bergofsky E H, Hurewitz A N.
Airway insufflation:
physiologic effects on acute and chronic gas exchange in humans.
Am Rev Respir Dis.
1989;
140
885-890
MissingFormLabel
- 9
Blankenburg T, Roloff D, Schädlich S. et al .
Rekompensation von schwerem hyperkapnischem
Versagen bei Patienten mit COPD unter 4 Wochen intermittierender
nicht invasiver Heimbeatmung.
Pneumologie.
2008;
62
126-131
MissingFormLabel
- 10
Boehmer J P.
Device therapy for heart failure.
Am J Cardiol.
2003;
91
53D-59D
MissingFormLabel
- 11
Budweiser S, Hitzl A P, Jörres R A. et al .
Impact of noninvasive
home ventilation on long-term survival in chronic hypercapnic COPD:
a prospective observational study.
Int J Clin Pract.
2007;
61
1516-1522
MissingFormLabel
- 12
Chailleux E, Fauroux B, Binet F. et al .
Predictors of survival in patients receiving
domiciliary oxygen therapy or mechanical ventilation. A 10-year analysis
of ANTADIR Observatory.
Chest.
1996;
109
741-749
MissingFormLabel
- 13
De Feo P, Di Loreto C, Lucidi P. et al .
Metabolic response to exercise.
J
Endocrinol Invest.
2003;
26
851-854
MissingFormLabel
- 14
de Groote P, Delour P, Mouquet F. et al .
The effects of beta-blockers in patients
with stable chronic heart failure. Predictors of left ventricular
ejection fraction improvement and impact on prognosis.
Am
Heart J.
2007;
154
589-595
MissingFormLabel
- 15
Dellweg D, Haidl P, Siemon K. et al .
Impact of breathing pattern on work of breathing
in healthy subjects and patients with COPD.
Respir Physiol Neurobiol.
2008;
161
197-200
MissingFormLabel
- 16
Dellweg D, Schonhofer B, Haidl P. et al .
Short-term effect of controlled instead
of assisted noninvasive ventilation in chronic respiratory failure due
to chronic obstructive pulmonary disease.
Respir Care.
2007;
52
1734-1740
MissingFormLabel
- 17
Desai A V, Marks G, Grunstein R.
Does sleep deprivation worsen mild obstructive sleep apnea?.
Sleep.
2003;
15,26
1038-1041
MissingFormLabel
- 18
Gorman R B, McKenzie D K, Butler J E. et al .
Diaphragm length and neural drive
after lung volume reduction surgery.
Am J Respir Crit
Care Med.
2005;
15,172
1259-1266
MissingFormLabel
- 19
Hoshi H, Shinshi T, Takatani S.
Third-generation blood pumps with mechanical noncontact magnetic
bearings.
Artif Organs.
2006;
30
324-338
MissingFormLabel
- 20
Jacobs I, Kaiser P, Tesch P.
Muscle strength and fatigue after selective glycogen depletion
in human skeletal muscle fibers.
Eur J Appl Physiol Occup
Physiol.
1981;
46
47-53
MissingFormLabel
- 21
Kalis J K, Freund B J, Joyner M J. et al .
Effect of beta-blockade
on the drift in O2 consumption during prolonged exercise.
J
Appl Physiol.
1988;
64
753-758
MissingFormLabel
- 22
Kim Y J, Bazzy A R.
Glycogen content
in neonatal diaphragmatic fibers in response to inspiratory flow
resistive loads.
Pediatr Res.
1992;
31
354-358
MissingFormLabel
- 23
Köhler D.
CaO2-Wert zur Beurteilung der Sauerstoff-Organversorgung: Klinische
Bedeutung des Sauerstoffgehaltes.
Dtsch Arztebl.
2005;
102
28-29
MissingFormLabel
- 24
Lightowler J V, Wedzicha J A, Elliott M W, Ram F S.
Non-invasive
positive pressure ventilation to treat respiratory failure resulting
from exacerbations of chronic obstructive pulmonary disease: Cochrane
systematic review and meta-analysis.
BMJ.
2003;
326
185
MissingFormLabel
- 25
Long term domiciliary oxygen therapy
in chronic hypoxic cor pulmonale complicating chronic bronchitis
and emphysema. Report of the Medical Research Council Working Party.
Lancet.
1981;
28
681-686
MissingFormLabel
- 26
Mancini D, Benaminovitz A, Cordisco M E. et al .
Slowed glycogen utilization enhances
exercise endurance in patients with heart failure.
J Am
Coll Cardiol.
1999;
34
1807-1812
MissingFormLabel
- 27
Manning H L, Schwartzstein R M.
Pathophysiology
of dyspnea.
N Engl J Med.
1995;
333
1547-1553
MissingFormLabel
- 28
Miller L W, Pagani F D, Russell S D. et al, II Clinical Investigators .
Use
of a continuous-flow device in patients awaiting heart transplantation.
N Engl J Med.
2007;
357
885-896
MissingFormLabel
- 29
Morgan T J.
The oxyhaemoglobin dissociation curve in critical illness.
Crit Care Resusc.
1999;
1
93-100
MissingFormLabel
- 30
Musch T I, Moore R L, Riedy M. et al .
Glycogen concentrations and endurance capacity
of rats with chronic heart failure.
J Appl Physiol.
1988;
64
1153-1159
MissingFormLabel
- 31
Nickol A H, Hart N, Hopkinson N S. et al .
Mechanisms of improvement of respiratory
failure in patients with restrictive thoracic disease treated with non-invasive
ventilation.
Thorax.
2005;
60
754-760
MissingFormLabel
- 32
Oeckler R A, Hubmayr R D.
Ventilator-associated
lung injury: a search for better therapeutic targets.
Eur
Respir J.
2007;
30
1216-1226
MissingFormLabel
- 33
Petrozzino J J, Scardella A T, Edelman N H, Santiago T V.
Respiratory
muscle acidosis stimulates endogenous opioids during inspiratory
loading.
Am Rev Respir Dis.
1992;
147
607-615
MissingFormLabel
- 34
Poole D C, Kindig C A, Behnke B J.
Effects of emphysema on diaphragm microvascular
oxygen pressure.
Am J Respir Crit Care Med.
2001;
163
1081-1086
MissingFormLabel
- 35
Proske U, Morgan D L.
Muscle damage
from eccentric exercise: mechanism, mechanical signs, adaptation
and clinical applications.
J Physiol.
2001;
537
333-345
MissingFormLabel
- 36
Raman J, Jeevanadam V.
Destination therapy with
ventricular assist devices.
Cardiology.
2004;
101
104-110
MissingFormLabel
- 37
Roussos C, Koutsoukou A.
Respiratory failure.
Eur Respir J Suppl.
2003;
47
3s-14s
MissingFormLabel
- 38
Schiffman P L, Trontell M C, Mazar M F, Edelman N H.
Sleep
deprivation decreases ventilatory response to CO2 but not load compensation.
Chest.
1983;
84
695-698
MissingFormLabel
- 39
Schönhofer B, Ardes P, Geibel M. et al .
Evaluation of a movement detector to measure
daily activity in patients with chronic lung disease.
Eur
Respir J.
1997;
10
2814-2819
MissingFormLabel
- 40
Schönhofer B, Barchfeld T, Wenzel M, Köhler D.
Long term effects
of non-invasive mechanical ventilation on pulmonary haemodynamics
in patients with chronic respiratory failure.
Thorax.
2001;
56
524-528
MissingFormLabel
- 41
Schönhofer B, Geibel M, Sonneborn M. et al .
Daytime mechanical ventilation in chronic
respiratory insufficiency.
Eur Respir J.
1997;
10
2840-2846
MissingFormLabel
- 42
Schönhofer B, Sonneborn M, Haidl P. et al .
Comparison of two different modes for noninvasive
mechanical ventilation in chronic respiratory failure: volume versus
pressure controlled device.
Eur Respir J.
1997;
10
184-191
MissingFormLabel
- 43
Simon L M, Robin E D, Phillips J R. et al .
Enzymatic basis for bioenergetic
differences of alveolar versus peritoneal macrophages and enzyme
regulation by molecular O2.
J Clin Invest.
1977;
59
443-448
MissingFormLabel
- 44
Simonds A K.
Home ventilation.
Eur Respir J Suppl.
2003;
47
38s-46s
MissingFormLabel
- 45
Simonds A K.
Recent advances in respiratory care for neuromuscular disease.
Chest.
2006;
130
1879-1886
MissingFormLabel
- 46
Stavrianeas S, Spangenburg E, Batts T. et al .
Prolonged exercise potentiates sarcoplasmic
reticulum Ca2+ uptake in rat diaphragm.
Eur J
Appl Physiol.
2003;
89
63-68
MissingFormLabel
- 47
Terrados N, Jansson E, Sylvén C, Kaijser L.
Is hypoxia a stimulus
for synthesis of oxidative enzymes and myoglobin?.
J Appl
Physiol.
1990;
68
2369-2372
MissingFormLabel
- 48
Weitzenblum E, Chaouat A.
Sleep and chronic obstructive
pulmonary disease.
Sleep Med Rev.
2004;
8
281-294
MissingFormLabel
- 49
Woodson R D, Torrance J D, Shappell S D, Lenfant C.
The effect
of cardiac disease on hemoglobin-oxygen binding.
J Clin
Invest.
1970;
49
1349-1356
MissingFormLabel
- 50
Young A C, Wilson J W, Kotsimbos T C, Naughton M T.
Randomised
placebo controlled trial of non-invasive ventilation for hypercapnia
in cystic fibrosis.
Thorax.
2008;
63
72-77
MissingFormLabel
Prof. Dr. Dieter Köhler
Krankenhaus Kloster Grafschaft, Pneumologie,
Allergologie, Beatmungs- und Schlafmedizin
57392
Schmallenberg
Telefon: 02972/791-2501
eMail: d.koehler@fkkg.de