Der Nuklearmediziner 2009; 32(2): 164-169
DOI: 10.1055/s-0028-1128128
Nicht-FDG-PET

© Georg Thieme Verlag KG Stuttgart · New York

Nuklearmedizinische Verfahren zum Nachweis hypoxischer Gewebe

Hypoxia ImagingR. Bares 1 , G. Reischl 2 , S.-M. Eschmann 3
  • 1Abteilung Nuklearmedizin, Universitätsklinikum Tübingen
  • 2Sektion Radiopharmazie, Universitätsklinikum Tübingen
  • 3Abteilung Nuklearmedizin, Marien-Hospital Stuttgart
Further Information

Publication History

Publication Date:
22 June 2009 (online)

Zusammenfassung

Hypoxie spielt in der Pathogenese zahlreicher Erkrankungen eine bedeutende Rolle. Während in vielen Fällen die Hypoxie klinisch bzw. durch indirekte Zeichen (z. B. Minderperfusion) diagnostiziert werden kann, ist dies bei malignen Tumoren nicht möglich. Neben der invasiven pO2-Histografie sind nuklearmedizinische Verfahren unter Verwendung radioaktiv markierter Hypoxiemarker der bislang einzige praktikable Ansatz. Bewährt haben sich vor allem 18F markierte Derivate des Nitroimidazols, die nach i. v. Injektion in die Zelle diffundieren und dort reduziert werden. Die entstehenden Intermediate binden unter hypoxischen Bedingungen an Makromoleküle in der Zelle und werden auf diese Weise retendiert, während bei Normoxie eine rasche Rückdiffusion erfolgt. In ersten klinischen Anwendungen konnte gezeigt werden, dass die lokale Anreicherung der Hypoxiemarker im Tumor mit einem schlechten Therapieansprechen verknüpft ist und somit konkrete Relevanz für die Therapieplanung bekommen könnte. Vor Aufnahme der Hypoxiebildgebung in die Planungsprotokolle der Radiotherapie sind jedoch größere prospektive Studien zur Überprüfung dieser ersten Ergebnisse erforderlich.

Abstract

Hypoxia plays an important role in the pathogenesis of many diseases. While it can be diagnosed clinically or assumed by indirect signs (reduced perfusion) in many instances, this cannot be achieved in malignant tumors. Besides invasive pO2-polarography nuclear medicine procedures are the only practical approach to detect tumor hypoxia so far. 18F labelled derivatives of nitroimidazole were shown to be suitable in both experimental and clinical studies. After iv injection they enter the cells via diffusion, are reduced, and finally bind to intracellular macromolecules, if hypoxia is present. In case of normoxia they rapidly leave the cells by rediffusion. First clinical studies demonstrated that local retention of hypoxia markers in malignant tumors was indicative for poor therapeutic outcome and may therefore gain relevance for treatment planning in the future. Prior to this, however, large prospective trials are needed to substantiate the first clinical results.

Literatur

  • 1 Barthel H, Wilson H, Collingridge DR. et al . In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography.  Br J Cancer. 2004;  90 2232-2242
  • 2 Bentzen L, Keiding S, Nordsmark M. et al . Tumor oxygenation assessed by [18F] fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumors.  Radiother Oncol. 2003;  67 339-344
  • 3 Biaglow R, Varnes ME, Roizen-Towle L. et al . Biochemistry of Reduction of Nitro Heterocycles.  Biochem Pharmacol. 1986;  35 77-90
  • 4 Brizel DM, Dodge RK, Clough RW. et al . Oxygenation of head and neck cancer: chnages during radiotherapy and impact on treatment outcome.  Radiother Oncol. 1999;  53 113-117
  • 5 Caldwell JH, Revenaugh JR, Martin GV. et al . Comparison of fluorine-18-fluorodeoxyglucose and tritiated fluoromisonidazole uptake during low-flow ischemia.  J Nucl Med. 1995;  36 1633-1638
  • 6 Chao KS, Bosch WR, Mutic S. et al . A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy.  Int J Radiat Oncol Biol Phys. 2001;  49 1171-1182
  • 7 Chapman JD. Hypoxic sensitizers – implications for radiation therapy.  N Engl J Med. 1979;  301 1429-1432
  • 8 Dehdashti F, Grigsby PW, Mintun MA. et al . Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report.  Int J Radiat Oncol Biol Phys. 2003;  55 1233-1238
  • 9 Dietz DW, Dehdashti F, Grigsby PW. et al . Tumor hypoxia detected by positron emission tomography with 60Cu-ATSM as a predictor of response and survival in patients undergoing Neoadjuvant chemoradiotherapy for rectal carcinoma: a pilot study.  Dis Colon Rectum. 2008;  51 1641-1648
  • 10 Dubois L, Landuyt W, Haustermans K. et al . Evaluation of hypoxia in an experimental rat tumour model by [18F]fluoromisonidazole PET and immunohistochemistry.  Br J Cancer. 2004;  91 1947-1954
  • 11 Endrich B, Vaupel P. Blood perfusion and microenvironment of human tumors. Springer 1988
  • 12 Eschmann SM, Paulsen F, Reimold M. et al . Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy.  J Nucl Med. 2005;  46 253-260
  • 13 Gagel B, Piroth M, Pinkawa M. et al . pO polarography, contrast enhanced color duplex sonography (CDS) [18F], fluoromisonidazole und [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relavant tumor oxygenation or only bricks in the puzzle of tumor hypoxia?.  BMC Cancer. 2007;  7 113
  • 14 Grönroos T, Eskola O, Lehtio K. et al . Pharmacokinetics of [18F]FETNIM: a potential marker for PET.  J Nucl Med. 2001;  42 1397-1404
  • 15 Grönroos T, Bentzen L, Marjamaka P. et al . Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma.  Eur J Nucl Med Mol Imaging. 2004;  31 513-520
  • 16 Groshar D, McEwan AJ, Parliament MB. et al . Imaging tumor hypoxia and tumor perfusion.  J Nucl Med. 1993;  34 885-888
  • 17 Höckel M, Vaupel P. Biological consequences of tumor hypoxia.  Sem Oncol. 2001;  28 36-41
  • 18 Kumar P, Wiebe LI, Atrazheva E. et al . An improved synthesis of α-AZA, α-AZP and α-AZG, the precursors to clinical markers of tissue hypoxia.  Tetrahedron Lett. 2001;  42 2077-2078
  • 19 Kumar P, Wiebe LI, Asikoglu M. et al . Microwave-assisted (radio)halogena-tion of nitroimidazole-based hypoxia markers.  Appl Radiat Isot. 2002;  57 697-703
  • 20 Kumar P, McQuarrie SA, Zhou A. et al . 131I]Iodoazomycin arabinoside for low-dose-rate isotope radiotherapy: radiolabeling, stability, long-term whole-body clearance and radiation dosimetry estimates in mice.  Nucl Med Biol. 2005;  32 647-653
  • 21 Lewis JS, Sharp TL, Laforest R. et al . Tumor uptake of copper-diacetyl-bis(N4-methylsemicarbazone): Effect of changes in tissue oxygenation.  J Nucl Med. 2001;  42 655-661
  • 22 Mannan RH, Somayaji VV, Lee J. et al . Radioiodinated 1-(5-iodo-5-deoxy-beta-D-arabinofuranosyl)-2-nitroimidazole (iodoazomycin arabinoside: IAZA): a novel marker of tissue hypoxia.  J Nucl Med. 1991;  32 1764-1770
  • 23 Maurer RI, Blower PJ, Dilworth JR. et al . Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals.  J Med Chem. 2002;  45 1420-1431
  • 24 Nordsmark M, Bentzen SM, Rudat V. et al . Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study.  Radiother Oncol. 2005;  77 18-24
  • 25 O’Donoghue JA, Zanzonico P, Pugachev A. et al . Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: comparative study featuring MicroPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models.  Int J Radiat Oncol Biol Phys. 2005;  61 1493-1502
  • 26 Piert M, Machulla HJ, Becker G. et al . Dependency of the [18F]fluoro-misonidazole uptake on oxygen delivery and tissue oxygenation in the porcine liver.  Nucl Med Biol. 2000;  27 693-700
  • 27 Piert M, Machulla HJ, Reischl G. et al . Fluorine-18 labeled fluoroazomycin arabinoside (FAZA): Imaging murine tumor hypoxia with improved biokinetics.  J Nucl Med. 2002;  43 278P
  • 28 Piert M, Machulla HJ, Picchio M. et al . Hypoxia-Specific Tumor Imaging with 18F-Fluoroazomycin Arabinoside.  J Nucl Med. 2005;  46 106-113
  • 29 Procissi D, Claus F, Burgman P. et al . In vivo 19F magnetic resonance spectroscopy and chemical shift imaging of tri-fluoro-nitroimidazole as a potential hypoxia reporter in solid tumors.  Clin Cancer Res. 2007;  13 3738-3747
  • 30 Rasey JS, Nelson NJ, Chin L. et al . Characteristics of the binding of labeled fluoromisonidazole in cells in vitro.  Radiat Res. 1990;  122 301-308
  • 31 Rasey J, Koh W, Evans M. et al . Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients.  Int J Radiat Oncol Biol Phys. 1996;  24 417-428
  • 32 Rasey JS, Casciari JJ, Hofstrand PD. et al . Determining hypoxic fraction in a rat glioma by uptake of radiolabeled fluoromisonidazole.  Radiat Res. 2000;  153 84-92
  • 33 Sorensen M, Horsman MR, Cumming P. et al . Effect of intratumoral heterogenity in oxygenation status on FMISO PET, autoradiography and eledrode pO2 measurements in murine tumors.  Int J Radiat Oncol Biol Phys. 2005;  62 854-861
  • 34 Sorger D, Patt M, Kumar P. et al . [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): A comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors.  Nucl Med Biol. 2003;  30 317-326
  • 35 Souvatzoglou M, Grosu A, Röper B. et al . Tumour Hypoxia Imaging with [18F]FAZA in Head and Neck Cancer Patients: A Pilot Study.  Eur J Nucl Med Mol Imaging. 2007;  34 1566-1575
  • 36 Vaupel P, Schlenger K, Knoop C. et al . Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements.  Cancer Res. 1991;  51 3316-3322
  • 37 Zanzonico P, O’Donoghue J, Chapman JD. et al . Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning.  Eur J Nucl Med Mol Imaging. 2004;  31 117-128

Korrespondenzadresse

Prof. Dr. R. Bares

Abteilung Nuklearmedizin

Radiologische Klinik

Universitätsklinikum Tübingen

Otfried-Müller-Str. 14

72076 Tübingen

Phone: +49/7071/29 82179

Fax: +49/7071/29 4601

Email: roland.bares@med.uni-tuebingen.de

    >