Abstract
Herein we report the highly asymmetric aza-Michael reactions
of α,β-enones (2-enoylthiazoles) with metalated
chiral oxazolidinones under different reaction conditions
and for different substituents at the β-position of the
Michael acceptor. The reaction proceeds with complete diastereoselectivity
to give exclusively one of the two diastereomers. The significance
of the reaction is that no catalyst has been used; the steric requirements
of the chiral Michael nucleophile drive the stereospecificity of
the reaction and the reaction time is much less compared to the
reported procedures. This methodology might be useful for an improved
total synthesis of the highly cytotoxic peptides known as the tubulysins.
Key words
asymmetric - aza-Michael Reaction - diastereoselectivity - noncatalytic - oxazolidinone
References and Notes
<A NAME="RD04909ST-1A">1a </A>
Perlmutter P.
Conjugate
Addition Reactions in Organic Synthesis
Pergamon
Press;
Oxford:
1992.
<A NAME="RD04909ST-1B">1b </A>
Rossiter BE.
Swingle NM.
Chem.
Rev.
1992,
92:
771
<A NAME="RD04909ST-1C">1c </A>
Tomioka K.
Nagaoka Y. In
Comprehensive
Asymmetric Catalysis
Vol. 3:
Springer;
Berlin:
1999.
Chap
31.1.
<A NAME="RD04909ST-1D">1d </A>
Modern Carbonyl
Chemistry
Otera J.
Wiley-VCH;
Weinheim:
2000.
Chap.
12.
<A NAME="RD04909ST-1E">1e </A>
Sibi MP.
Manyem S.
Tetrahedron
2000,
56:
8033
<A NAME="RD04909ST-1F">1f </A>
Krause N.
Hoffmann-Röder A.
Synthesis
2001,
171
<A NAME="RD04909ST-2A">2a </A>
Cardillo G.
Tomasini C.
Chem.
Soc. Rev.
1996,
25:
117
<A NAME="RD04909ST-2B">2b </A>
Fustero S.
Pina B.
Salavert E.
Navarro A.
Ramirez de Arellano MC.
Fuentes AS.
J.
Org. Chem.
2002,
67:
4667
<A NAME="RD04909ST-2C">2c </A>
George GI.
The Organic Chemistry
of β-Lactams
Wiley-VCH;
New
York:
1993.
<A NAME="RD04909ST-2D">2d </A>
Juaristi E.
Lopez-Ruiz H.
Curr. Med. Chem.
1999,
6:
983
<A NAME="RD04909ST-2E">2e </A>
Seebach D.
Matthews JL.
Chem. Commun.
1997,
2015
<A NAME="RD04909ST-3A">3a </A>
Kakumoto K.
Kobayashi S.
Sugiura M.
Org. Lett.
2002,
4:
1319
<A NAME="RD04909ST-3B">3b </A>
Xu L.-W.
Li J.-W.
Xia C.-G.
Zhou S.-L.
Hu X.-X.
Synlett
2003,
2425
<A NAME="RD04909ST-3C">3c </A>
Xu L.-W.
Xia
C.-G.
Tetrahedron Lett.
2004,
45:
4507
<A NAME="RD04909ST-3D">3d </A>
Nakama K.
Seki S.
Kanemasa S.
Tetrahedron
Lett.
2001,
42:
6719
<A NAME="RD04909ST-3E">3e </A>
Nakama K.
Seki S.
Kanemasa S.
Tetrahedron
Lett.
2002,
43:
3891
<A NAME="RD04909ST-3F">3f </A>
Volonterio A.
Zanda M.
Tetrahedron Lett.
2003,
44:
8549
<A NAME="RD04909ST-4A">4a </A>
Matsunaga H.
Sakamaki T.
Nagaoka H.
Yamada Y.
Tetrahedron
Lett.
1983,
24:
3009
<A NAME="RD04909ST-4B">4b </A>
D’Angelo J.
Maddaluno J.
J. Am.
Chem. Soc.
1986,
108:
8112
<A NAME="RD04909ST-4C">4c </A>
Hawkins JM.
Lewis TA.
J.
Org. Chem.
1992,
57:
2114
<A NAME="RD04909ST-4D">4d </A>
Loh T.-P.
Wei L.-L.
Synlett
1998,
975
<A NAME="RD04909ST-4E">4e </A>
Bull SD.
Davies SG.
Delgado-Ballester S.
Fenton G.
Kelly PM.
Smith AD.
Synlett
2000,
1257
<A NAME="RD04909ST-4F">4f </A>
Sani M.
Bruché L.
Chiva G.
Fustero S.
Piera J.
Volonterio A.
Zanda M.
Angew.
Chem. Int. Ed.
2003,
42:
2060
<A NAME="RD04909ST-4G">4g </A>
Fleck TJ.
McWhorter WW.
DeKam RN.
Pearlman BA.
J. Org. Chem.
2003,
68:
9612
<A NAME="RD04909ST-4H">4h </A>
Lurain AE.
Walsh PJ.
J.
Am. Chem. Soc.
2003,
125:
10677
<A NAME="RD04909ST-5A">5a </A>
Enders D.
Müller SF.
Raabe G.
Angew Chem.
Int. Ed.
1999,
38:
195 ; Angew. Chem. 1999 , 111 , 2112
<A NAME="RD04909ST-5B">5b </A>
Enders D.
Wallert S.
Synlett
2002,
304
<A NAME="RD04909ST-5C">5c </A>
Job A.
Janeck CF.
Bettray W.
Peters R.
Enders D.
Tetrahedron
2002,
58:
2253
<A NAME="RD04909ST-5D">5d </A>
Enders D.
Wallert S.
Runsink J.
Synthesis
2003,
1856
<A NAME="RD04909ST-6">6 </A>
Doi H.
Sakai T.
Iguchi M.
Yamada K.
Tomioka K.
J.
Am. Chem. Soc.
2003,
125:
2886
<A NAME="RD04909ST-7">7 </A>
Luo-Ting Y.
Huang J.
Chang CY.
Yang TK.
Molecules
2006,
11:
641 ; and references cited therein
<A NAME="RD04909ST-8A">8a </A>
Urbach H.
Henning R.
Tetrahedron
Lett.
1984,
25:
1143
<A NAME="RD04909ST-8B">8b </A>
Yamada M.
Nagashima N.
Hasegawa J.
Takahashi S.
Tetrahedron Lett.
1998,
39:
9019
<A NAME="RD04909ST-8C">8c </A>
Ferencic M.
Gärtner P.
Girreser U.
Klinge M.
Gaischin L.
Mereiter K.
Noe CR.
Monatsh.
Chem.
1999,
130:
769
<A NAME="RD04909ST-9">9 </A>
Kakumoto K.
Kobayashi S.
Sugiura M.
Org.
Lett.
2002,
4:
1319
<A NAME="RD04909ST-10">10 </A>
Bigotti S.
Volenterio A.
Zanda M.
Synlett
2008,
958
<A NAME="RD04909ST-11">11 </A>
Sani M.
Fossati G.
Huguenot F.
Zanda M.
Angew. Chem. Int. Ed.
2007,
46:
3526
<A NAME="RD04909ST-12">12 </A> For other aza-Michael reactions
on 2-enoyl-thiazoles, see:
Dondoni A.
Marra A.
Boscarato A.
Chem.
Eur. J.
1999,
5:
3562
<A NAME="RD04909ST-13">13 </A>
Hughes RA.
Thompson SP.
Alcaraz L.
Moody CJ.
J. Am. Chem. Soc.
2005,
127:
15644
<A NAME="RD04909ST-14">14 </A>
Turconi J.
Lebeau L.
Paris JM.
Mioskowski C.
Tetrahedron
2006,
62:
8109
<A NAME="RD04909ST-15">15 </A>
Crystallographic data (excluding structure
factors) for the structures in this paper have been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication
no CCDC 718419. Copies of the data can be obtained, free of charge
via www.ccdc.cam.ac.uk/conts/retrieving.html [or
from the Cambridge Crystallographic Data Centre, CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK; fax:+44 (1223)336033; or e-mail: deposit@ccdc.cam.ac.uk].