Abstract
Highly enantioselective aminations of acyclic α-alkyl β-keto
thioesters and trifluoroethyl α-methyl α-cyanoacetate
(12 ) with as low as 0.05 mol% of
a bifunctional cinchona alkaloid catalyst were established. This
ability to afford high enantioselectivity for the amination of α-alkyl β-carbonyl
compounds renders the 6′-OH cinchona alkaloid-catalyzed
amination applicable for the enantioselective synthesis
of acyclic chiral compounds bearing N-substituted quaternary stereocenters.
The synthetic application of this reaction is illustrated in a concise
asymmetric synthesis of α-methylserine, a key intermediate
previously utilized in the total synthesis of a small molecule immunomodulator,
conagenin.
Key words
bifunctional catalysis - asymmetric organocatalysis - cinchona alkaloids - chiral
amines - quaternary
stereocenters
References and Notes
For reviews, see:
<A NAME="RY01609ST-1A">1a </A>
Gröger H.
Chem. Rev.
2003,
103:
2795
<A NAME="RY01609ST-1B">1b </A>
Spino C.
Angew.
Chem. Int. Ed.
2004,
43:
1764
<A NAME="RY01609ST-2A">2a </A>
Vachal P.
Jacobsen EN.
Org.
Lett.
2000,
2:
867
<A NAME="RY01609ST-2B">2b </A>
Vachal P.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
10012
<A NAME="RY01609ST-2C">2c </A>
Masumoto S.
Usuda H.
Suzuki M.
Kanai M.
Shibasaki M.
J. Am.
Chem. Soc.
2003,
125:
5634
<A NAME="RY01609ST-2D">2d </A>
Kato N.
Suzuki M.
Kanai M.
Shibasaki M.
Tetrahedron Lett.
2004,
45:
3147
<A NAME="RY01609ST-2E">2e </A>
Kato N.
Suzuki M.
Kanai M.
Shibasaki M.
Tetrahedron Lett.
2004,
45:
3153
<A NAME="RY01609ST-2F">2f </A>
Kato N.
Tomita D.
Maki K.
Kanai M.
Shibasaki M.
J. Org. Chem.
2004,
69:
6128
<A NAME="RY01609ST-2G">2g </A>
Kato N.
Mita T.
Kanai M.
Therrien B.
Kawano M.
Yamaguchi K.
Danjo H.
Sei Y.
Sato A.
Furusho S.
Shibasaki M.
J. Am. Chem. Soc.
2006,
128:
6768
<A NAME="RY01609ST-2H">2h </A>
Wang J.
Hu XL.
Jiang J.
Gou
SH.
Huang X.
Liu XH.
Feng XM.
Angew.
Chem. Int. Ed.
2007,
46:
8468
<A NAME="RY01609ST-2I">2i </A>
Hou Z.
Wang J.
Liu X.
Feng X.
Chem. Eur. J.
2008,
14:
4484
For reviews, see:
<A NAME="RY01609ST-3A">3a </A>
Maruoka K.
Ooi T.
Chem. Rev.
2003,
103:
3013
<A NAME="RY01609ST-3B">3b </A>
O’Donell MJ.
Acc. Chem. Res.
2004,
37:
506
<A NAME="RY01609ST-3C">3c </A>
Hashimoto T.
Maruoka K.
Chem. Rev.
2007,
107:
5656
<A NAME="RY01609ST-4A">4a </A>
Ooi T.
Takeuchi M.
Kameda M.
Maruoka K.
J. Am. Chem.
Soc.
2000,
122:
5228
<A NAME="RY01609ST-4B">4b </A>
Ooi T.
Takeuchi M.
Maruoka K.
Synthesis
2001,
1716
<A NAME="RY01609ST-4C">4c </A>
Ooi T.
Takeuchi M.
Ohara D.
Maruoka K.
Synlett
2001,
1185
<A NAME="RY01609ST-4D">4d </A>
Jew
S.-s.
Jeong B.-S.
Lee J.-H.
Yoo M.-S.
Lee Y.-J.
Park B.-s.
Kim MG.
Park H.-g.
J. Org. Chem.
2003,
68:
4514
<A NAME="RY01609ST-5A">5a </A>
Marigo M.
Juhl K.
Jørgensen KA.
Angew. Chem. Int. Ed.
2003,
42:
1367
<A NAME="RY01609ST-5B">5b </A>
Mashiko T.
Hara K.
Tanaka D.
Fujiwara Y.
Kumagai N.
Shibasaki M.
J. Am. Chem. Soc.
2007,
129:
11342
<A NAME="RY01609ST-5C">5c </A>
Mashiko T.
Kumagai N.
Shibasaki M.
Org.
Lett.
2008,
10:
2725
<A NAME="RY01609ST-6A">6a </A>
Saaby S.
Bella M.
Jørgensen KA.
J. Am. Chem. Soc.
2004,
126:
8120
<A NAME="RY01609ST-6B">6b </A>
Liu X.
Li H.
Deng L.
Org.
Lett.
2005,
7:
167
<A NAME="RY01609ST-6C">6c </A>
Xu X.
Yabuta T.
Yuan P.
Takemoto Y.
Synlett
2006,
137
<A NAME="RY01609ST-6D">6d </A>
Terada M.
Nakano M.
Ube H.
J.
Am. Chem. Soc.
2006,
128:
16044
<A NAME="RY01609ST-6E">6e </A>
Pihko P.
Pohjakallio A.
Synlett
2004,
2115
<A NAME="RY01609ST-7">7 </A>
Brandes S.
Belle M.
Kjærsgaard A.
Jørgensen KA.
Angew.
Chem. Int. Ed.
2006,
45:
1147
<A NAME="RY01609ST-8A">8a </A>
Li H.
Wang Y.
Tang L.
Deng L.
J. Am. Chem.
Soc.
2004,
126:
9906
<A NAME="RY01609ST-8B">8b </A>
Li H.
Wang Y.
Tang L.
Wu F.
Liu X.
Guo C.
Foxman BM.
Deng L.
Angew.
Chem. Int. Ed.
2004,
44:
105
The β-ketothioester is
more acidic than the corresponding β-ketoester,
see:
<A NAME="RY01609ST-9A">9a </A>
Bordwell FG.
Fried HE.
J.
Org. Chem.
1991,
56:
4218
<A NAME="RY01609ST-9B">9b </A>
Bordwell FG.
Acc. Chem. Res.
1988,
21:
456
<A NAME="RY01609ST-9C">9c </A>
Bell RP.
The Proton in Chemistry
Cornell
University Press;
Ithica / NY:
1959.
<A NAME="RY01609ST-10A">10a </A>
Yamashita T.
Iijima M.
Nakamura H.
Isshiki K.
Naganawa H.
Hattori S.
Hamada M.
Ishizuka M.
Takeuchi T.
Iitaka Y.
J.
Antibiot.
1991,
44:
557
<A NAME="RY01609ST-10B">10b </A>
Sano S.
Miwa T.
Hayashi K.
Nozaki K.
Ozaki Y.
Nagao Y.
Tetrahedron
Lett.
2001,
42:
4029
<A NAME="RY01609ST-11">11 </A>
Experimental procedure for the asymmetric
amination of 3 (or 10 )
with 4a catalyzed by QD-1 :
To a solution of 3 or 10 (0.22
mmol, 1.1 equiv) and QD-1 in toluene (2.0
mL) at the indicated temperature under stirring, a solution of 4a in toluene (0.50 M, 0.40 mL, 0.20 mmol)
was added dropwise in 5-10 min. The resulting reaction
mixture was stirred until the color of the solution turned from
yellow to colorless (or at the indicated time), and the amination
product was isolated by flash chromatography.
<A NAME="RY01609ST-12">12 </A>
Experimental procedure for the asymmetric
amination of 3 (or 10 )
with 4a catalyzed by Q-1 :
A suspension of Q-1 in toluene (2.0 mL)
was subjected to ultrasound until no chunky solid was visible (˜15
min). The resulting mixture was heated at 110 ˚C
until a clear solution was formed (10-15 min). While it
was still hot, the solution was allowed to pass a cotton plug to
remove any trace amount of insoluble residue and then cooled to
room temperature. Then 3 (or 10 ) (0.22 mmol, 1.1 equiv) was added. This
mixture was stirred at the indicated temperature and a solution
of 4a (0.50 M, 0.40 mL, 0.20 mmol) in toluene
was added dropwise in 5-10 min. The stirring was continued
until the color of the solution turned from yellow to colorless
(or at the indicated time) and the amination product was isolated
by flash chromatography separation.