Abstract
Recent advances using nickel complexes in the activation of unactivated
monosubstituted olefins for catalytic intermolecular carbon-carbon
bond-forming reactions with carbonyl compounds, such as simple aldehydes,
isocyanates, and conjugated aldehydes and ketones, are discussed.
In these reactions, the olefins function as vinyl- and allylmetal
equivalents, providing a new strategy for organic synthesis. Current
limitations and the outlook for this new strategy are also discussed.
1 Introduction
2 Carbonyl-Ene-Type Reactions
2.1 Reactions Catalyzed by Group 10 Cationic Complexes as Lewis
Acids
2.2 Reactions Catalyzed by Low-Valent Nickel(0) Complexes
3 Unactivated Monosubstituted Alkenes as Vinylmetal Equivalents
3.1 Intramolecular Reactions with Aldehydes and Ketones
3.2 Intermolecular Reactions with Aldehydes
3.3 Synthesis of Acrylamides with Isocyanates
3.4 Conjugate Addition to α,β-Unsaturated
Aldehydes and Ketones
4 Intramolecular Insertion of Alkenes into Cyclobutanones
5 Limitations and Outlook
Key words
alkenes - transition-metal catalysis - carbon-carbon bond
formation - carbonyl-ene reactions - addition
reactions
References
<A NAME="RA53409ST-1">1 </A>
Alpha
Olefins Applications Handbook
Lappin GR.
Sauer JD.
M.
Dekker;
New York:
1989.
<A NAME="RA53409ST-2A">2a </A>
Organometallic Catalysts and Olefin Polymerization
Blom R.
Springer;
New
York:
2001.
<A NAME="RA53409ST-2B">2b </A>
Special Issue ‘Frontiers
in Metal-Catalyzed Polymerization’ (Gladysz, J.
A., Guest Ed.): ; Chem. Rev.; 2000 , 100 : 1167-1682
<A NAME="RA53409ST-3">3 </A>
Tsuji J.
Palladium Reagents and Catalysts: Innovations
in Organic Synthesis
John Wiley & Sons;
New
York:
1995.
<A NAME="RA53409ST-4A">4a </A> For
a recent review on epoxidation, see:
Catalytic Asymmetric
Synthesis
Ojima I.
Wiley-VCH;
Weinheim:
2000.
<A NAME="RA53409ST-4B">4b </A>
Shi Y.
Acc.
Chem. Res.
2004,
37:
488
<A NAME="RA53409ST-4C">4c </A>
Yang D.
Acc.
Chem. Res.
2004,
37:
497
<A NAME="RA53409ST-4D">4d </A> For reviews on dihydroxylation,
see:
Xia Q.-H.
Ge H.-Q.
Ye C.-P.
Liu Z.-M.
Su K.-X.
Chem. Rev.
2005,
105:
1603
<A NAME="RA53409ST-4E">4e </A>
Kolb HC.
VanNieuwenhze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2483
<A NAME="RA53409ST-4F">4f </A>
Bolm C.
Hildebrand JP.
Muniz K.
Recent Advances in Asymmetric Dihydroxylation and
Aminohydroxylation in Catalytic Asymmetric Synthesis
2nd
ed.:
Ojima I.
Wiley-VCH;
Weinheim:
2000.
p.399
<A NAME="RA53409ST-4G">4g </A>
Sundermeier U.
Döbler C.
Beller M. In
Modern Oxidation Methods
Bäckvall J.-E.
Wiley-VCH;
Weinheim:
2004.
p.1-20
<A NAME="RA53409ST-4H">4h </A>
Kobayashi S.
Sugiura M.
Adv. Synth. Catal.
2006,
348:
1496
<A NAME="RA53409ST-5A">5a </A> For
reviews, see:
Handbook of Metathesis
Grubbs
RH.
John
Wiley & Sons;
New York:
2003.
<A NAME="RA53409ST-5B">5b </A>
Grubbs RH.
Tetrahedron
2004,
60:
7117
<A NAME="RA53409ST-5C">5c </A>
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4490
For reviews on the Heck reaction
and related palladium hydride chemistry, see:
<A NAME="RA53409ST-6A">6a </A>
Beletskaya IP.
Cheprakov
AV.
Chem.
Rev.
2000,
100:
3009
<A NAME="RA53409ST-6B">6b </A>
Negishi E.-i.
Handbook of Organopalladium Chemistry for
Organic Synthesis
Wiley-Interscience;
New
York:
2002.
The carbonyl-ene reaction
was first reported by Alder in 1943:
<A NAME="RA53409ST-7A">7a </A>
Alder K.
Pascher F.
Schmitz A.
Ber.
Dtsch. Chem. Ges.
1943,
76:
27
<A NAME="RA53409ST-7B">7b </A> For reviews on the carbonyl-ene
and Prins reactions, see:
Snider BB. In
Comprehensive Organic Synthesis
Vol.
2:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.527
<A NAME="RA53409ST-7C">7c </A>
Hoffmann HMR.
Angew. Chem., Int. Ed. Engl.
1969,
8:
556
<A NAME="RA53409ST-7D">7d </A>
Adams
DR.
Bhatnagar SP.
Synthesis
1977,
661
<A NAME="RA53409ST-7E">7e </A>
Oppolzer W.
Snieckus V.
Angew. Chem., Int. Ed. Engl.
1978,
17:
476
<A NAME="RA53409ST-7F">7f </A>
Snider BB.
Acc. Chem. Res.
1980,
13:
426
<A NAME="RA53409ST-7G">7g </A>
Mikami K.
Shimizu M.
Chem. Rev.
1992,
92:
1021
<A NAME="RA53409ST-7H">7h </A>
Berrisford DJ.
Bolm C.
Angew. Chem.
Int. Ed.
1995,
34:
1717
<A NAME="RA53409ST-7I">7i </A>
Dias LC.
Curr. Org. Chem.
2000,
4:
305
<A NAME="RA53409ST-7J">7j </A>
Overman LE.
Pennington LD.
J.
Org. Chem.
2003,
68:
7143
<A NAME="RA53409ST-7K">7k </A>
Pastor IM.
Yus M.
Curr. Org. Chem.
2007,
11:
925
<A NAME="RA53409ST-7L">7l </A>
Clarke ML.
France MB.
Tetrahedron
2008,
64:
9003
<A NAME="RA53409ST-7M">7m </A>
Ding K.
Chem.
Commun.
2008,
909
<A NAME="RA53409ST-8A">8a </A>
Snider BB.
Rodini DJ.
Tetrahedron Lett.
1980,
21:
1815
<A NAME="RA53409ST-8B">8b </A>
Snider BB.
Rodini DJ.
Kirk TC.
Cordova R.
J.
Am. Chem. Soc.
1982,
104:
555
<A NAME="RA53409ST-8C">8c </A>
Majewski M.
Bantle GW.
Synth. Commun.
1990,
20:
2549
<A NAME="RA53409ST-8D">8d </A>
Houston TA.
Tanaka Y.
Koreeda M.
J. Org. Chem.
1993,
58:
4287
<A NAME="RA53409ST-8E">8e </A>
Aggarwal VK.
Vennall GP.
Davey PN.
Newman C.
Tetrahedron
Lett.
1998,
39:
1997
<A NAME="RA53409ST-8F">8f </A>
Ellis WW.
Odenkirk W.
Bosnich B.
Chem. Commun.
1998,
1311
<A NAME="RA53409ST-8G">8g </A>
Loh T.-P.
Feng L.-C.
Yang J.-Y.
Synthesis
2002,
937
<A NAME="RA53409ST-9">9 </A> One isolated example of a carbonyl-ene
reaction of an aromatic aldehyde and a monosubstituted alkene has
been described (yield not reported):
Epifani E.
Florio S.
Ingrosso G.
Tetrahedron
1988,
44:
5869
For intramolecular examples using
sterically demanding aldehydes, see:
<A NAME="RA53409ST-10A">10a </A>
Andersen NH.
Hadley SW.
Kelly
JD.
Bacon ER.
J.
Org. Chem.
1985,
50:
4144
<A NAME="RA53409ST-10B">10b </A>
Fujita M.
Shindo M.
Shishido K.
Tetrahedron
Lett.
2005,
46:
1269
<A NAME="RA53409ST-11">11 </A> For pioneering examples employing α-olefins
with aliphatic aldehydes, see:
Snider BB.
Phillips GB.
J. Org. Chem.
1983,
48:
464
<A NAME="RA53409ST-12">12 </A>
For intramolecular examples of a carbonyl-ene
reaction between monosubstituted alkenes and sterically demanding aldehydes,
see refs. 10a and 10b.
<A NAME="RA53409ST-13A">13a </A>
Ng S.-S.
Jamison TF.
J.
Am. Chem. Soc.
2005,
127:
14194
<A NAME="RA53409ST-13B">13b </A>
Ho C.-Y.
Ng S.-S.
Jamison TF.
J.
Am. Chem. Soc.
2006,
128:
5362
<A NAME="RA53409ST-13C">13c </A>
Ng S.-S.
Ho C.-Y.
Jamison
TF.
J. Am. Chem. Soc.
2006,
128:
11513
<A NAME="RA53409ST-13D">13d </A> For the use of isocyanates
as electrophiles, see:
Ho C.-Y.
Jamison TF.
Angew. Chem. Int. Ed.
2007,
46:
782
<A NAME="RA53409ST-13E">13e </A>
Schleicher KD.
Jamison TF.
Org.
Lett.
2007,
9:
875
<A NAME="RA53409ST-13F">13f </A> For the use of enal and
enol as electrophiles, see:
Ng S.-S.
Ho C.-Y.
Schleicher KD.
Jamison TF.
Pure Appl. Chem.
2008,
80:
929
<A NAME="RA53409ST-13G">13g </A>
Ho C.-Y.
Ohmiya H.
Jamison TF.
Angew. Chem.
Int. Ed.
2008,
47:
1893
<A NAME="RA53409ST-14">14 </A>
Achmatowicz O.
Szechner B.
J. Org. Chem.
1972,
37:
964
<A NAME="RA53409ST-15A">15a </A>
Whitesell JK.
Bhattacharya A.
Aguilar DA.
Henke K.
J. Chem. Soc., Chem. Commun.
1982,
989
<A NAME="RA53409ST-15B">15b </A>
Whitesell JK.
Lawrence RM.
Chen HH.
J. Org. Chem.
1986,
51:
4779
<A NAME="RA53409ST-15C">15c </A>
Whitesell JK.
Bhattacharya A.
Buchanan CM.
Chen HH.
Deyo D.
James D.
Liu C.-L.
Minton MA.
Tetrahedron
1986,
42:
2993
For the use of a chiral aluminum-BINOL
complex, see:
<A NAME="RA53409ST-16A">16a </A> For representative examples
on enantioselective catalysis of carbonyl-ene reactions
by titanium complexes, see:
Maruoka K.
Hoshino Y.
Shirasaka T.
Yamamoto H.
Tetrahedron Lett.
1988,
29:
3967
<A NAME="RA53409ST-16B">16b </A>
Mikami K.
Terada M.
Nakai T.
J.
Am. Chem. Soc.
1989,
111:
1940
<A NAME="RA53409ST-16C">16c </A>
Mikami K.
Sawa E.
Terada M.
Tetrahedron: Asymmetry
1991,
2:
1403
<A NAME="RA53409ST-16D">16d </A> For the use of a chiral bis(oxazoline)copper(II)
complex, see:
Mikami K.
Koizumi Y.
Osawa A.
Terada M.
Takayama H.
Nakagawa K.
Okano T.
Synlett
1999,
1899
<A NAME="RA53409ST-16E">16e </A>
Evans
DA.
Burgey CS.
Paras NA.
Vojkovsky T.
Tregay
SW.
J. Am. Chem. Soc.
1998,
120:
5824
For pioneering work on intermolecular
reactions employing chiral palladium(II) complexes, see:
<A NAME="RA53409ST-17A">17a </A> For highly enantioselective
ene-type cyclizations catalyzed by chiral palladium complexes bearing
BINAP derivatives, see:
Hao J.
Hatano M.
Mikami K.
Org. Lett.
2000,
2:
4059
<A NAME="RA53409ST-17B">17b </A>
Hatano M.
Terada M.
Mikami K.
Angew.
Chem. Int. Ed.
2001,
40:
249
Other representative examples reported
in 2008 employing metal catalyst centers other than group 10 or
Brønsted acids. For enantioselective catalytic carbonyl-ene
cyclization reactions by a chromium(III) complex, see:
<A NAME="RA53409ST-18A">18a </A> For such reactions catalyzed
by an indium(III)-PyBox complex, see:
Grachan ML.
Tuidge MT.
Jacobsen EN.
Angew. Chem. Int. Ed.
2008,
47:
1469
<A NAME="RA53409ST-18B">18b </A> For organocatalytic chiral
Brønsted acids, see:
Zhao J.-F.
Tsui H.-Y.
Wu
P.-J.
Lu J.
Loh T.-P.
J.
Am. Chem. Soc.
2008,
130:
16492
<A NAME="RA53409ST-18C">18c </A> For a one-pot desymmetrizing
hydroformylation/carbonyl-ene cyclization process
for the synthesis of cyclohexanols, see:
Rueping M.
Theissmann T.
Kuenkel A.
Koenigs RM.
Angew. Chem. Int.
Ed.
2008,
47:
6798
<A NAME="RA53409ST-18D">18d </A> For the synthesis of pentalenes,
see:
Bigot A.
Breuninger D.
Breit B.
Org. Lett.
2008,
10:
5321
<A NAME="RA53409ST-18E">18e </A> For the total synthesis
of (+)-upial, see:
Anderl T.
Emo M.
Laschat S.
Baro A.
Frey W.
Synthesis
2008,
1619
<A NAME="RA53409ST-18F">18f </A> For the total synthesis
of (+)-azaspiracid-1, see:
Takahashi K.
Watanabe M.
Honda T.
Angew.
Chem. Int. Ed.
2008,
47:
131
<A NAME="RA53409ST-18G">18g </A>
Evans DA.
Kvaerno L.
Dunn
TB.
Beauchemin A.
Raymer B.
Mulder JA.
Olhava EJ.
Juhl M.
Kagechika K.
Favor DA.
J.
Am. Chem. Soc.
2008,
130:
16295
For platinum(II)-, palladium(II)-,
or nickel(II)-catalyzed carbonyl-ene reactions employing
the dynamic asymmetric catalysis strategy, see:
<A NAME="RA53409ST-19A">19a </A>
Becker JJ.
White PS.
Gagne MR.
J. Am. Chem. Soc.
2001,
123:
9478
<A NAME="RA53409ST-19B">19b </A>
Mikami K.
Aikawa K.
Org. Lett.
2002,
4:
99
<A NAME="RA53409ST-19C">19c </A>
Doherty S.
Goodrich P.
Hardacre C.
Luo H.-K.
Nieuwenhuyzen M.
Rath RK.
Organometallics
2005,
24:
5945
<A NAME="RA53409ST-19D">19d </A>
Luo H.-K.
Schumann H.
J. Mol. Catal. A: Chem.
2006,
248:
42
<A NAME="RA53409ST-20A">20a </A>
Becker JJ.
Van Orden LJ.
White PS.
Gagne
MR.
Org. Lett.
2002,
4:
727
<A NAME="RA53409ST-20B">20b </A>
Mikami K.
Aikawa K.
Kainuma S.
Kawakami Y.
Saito T.
Sayo N.
Kumobayashi H.
Tetrahedron:
Asymmetry
2004,
15:
3885
<A NAME="RA53409ST-20C">20c </A>
Aikawa K.
Kainuma S.
Hatano M.
Mikami K.
Tetrahedron Lett.
2004,
45:
183
<A NAME="RA53409ST-20D">20d </A> For the use of arylglyoxals,
see:
Doherty S.
Knight JG.
Smyth CH.
Harrington RW.
Clegg W.
J.
Org. Chem.
2006,
71:
9751
<A NAME="RA53409ST-20E">20e </A>
Luo H.-K.
Khim LB.
Schumann H.
Lim C.
Jie
TX.
Yang H.-Y.
Adv. Synth. Catal.
2007,
349:
1781
<A NAME="RA53409ST-21">21 </A> For the use of achiral acidic phenol
additives, see:
Koh JH.
Larsen AO.
Gagne MR.
Org.
Lett.
2001,
3:
1233
<A NAME="RA53409ST-22">22 </A> Lewis acid catalysts of metals of
the platinum group showed different carbonyl-ene reactivity.
See:
Doherty S.
Knight JG.
Smyth CH.
Harrington RW.
Clegg W.
Organometallics
2007,
26:
5961
<A NAME="RA53409ST-23">23 </A> For a water-tolerant enantioselective
system, see:
Luo
H.-K.
Yang H.-Y.
Jie TX.
Chiew OS.
Schumann H.
Khim LB.
Lim C.
J.
Mol. Catal. A: Chem.
2007,
261:
112
<A NAME="RA53409ST-24">24 </A> For the use of nickel(II), see:
Zheng K.
Shi J.
Liu XH.
Feng XM.
J.
Am. Chem. Soc.
2008,
130:
15770
<A NAME="RA53409ST-25A">25a </A>
Ogoshi S.
Oka M.
Kurosawa H.
J. Am. Chem. Soc.
2004,
126:
11802
<A NAME="RA53409ST-25B">25b </A>
Ogoshi S.
Ueta M.
Arai T.
Kurosawa H.
J. Am. Chem. Soc.
2005,
127:
12810
<A NAME="RA53409ST-25C">25c </A>
Ogoshi S.
Tonomori K.
Oka M.
Kurosawa H.
J. Am. Chem. Soc.
2006,
128:
7077
This selectivity has been observed
in one thermal carbonyl-ene reaction, namely of 6-methylhepta-1,5-diene
and the highly electron-deficient diethyl oxomalonate (180 ˚C,
24 h):
<A NAME="RA53409ST-26A">26a </A>
Salomon MF.
Pardo SN.
Salomon RG.
J. Am. Chem. Soc.
1980,
102:
2473
<A NAME="RA53409ST-26B">26b </A>
Salomon MF.
Pardo
SN.
Salomon RG.
J. Am. Chem. Soc.
1984,
106:
3797
<A NAME="RA53409ST-27">27 </A> Procedure of the competition experiment:
The monosub-stituted alkene (2.5 mmol), methylenecyclohexane (2.5 mmol),
Et3 N (3.0 mmol), p -anisaldehyde
(0.5 mmol), and TESOTf (0.875 mmol) were added to a soln of Ni(cod)2 (0.1 mmol)
and the ligand [Ph3 P or (EtO)PPh2 ,
0.2 mmol] in toluene (2.5 mL) at 23 ˚C under argon.
The mixture was stirred for 48 h at r.t. The yields and ratios were
determined by ¹ H NMR analysis of the crude reaction
mixture. Ph3 P was the ligand in the reaction between
allylbenzene and methylenecyclohexane. (EtO)PPh2 was
the ligand in the reaction between oct-1-ene and methylenecyclohexane
For titanium-catalyzed intramolecular
reductive cyclization of terminal alkenes and aldehydes or ketones,
see:
<A NAME="RA53409ST-28A">28a </A>
Kablaoui NM.
Buchwald SL.
J.
Am. Chem. Soc.
1995,
117:
6785
<A NAME="RA53409ST-28B">28b </A>
Crowe WE.
Rachita MJ.
J.
Am. Chem. Soc.
1995,
117:
6787
For examples of intermolecular
coupling of alkenes and aldehydes with stoichiometric transition
metals, see the following. With titanium:
<A NAME="RA53409ST-29A">29a </A>
Mizojiri R.
Urabe H.
Sato F.
J.
Org. Chem.
2000,
65:
6217
<A NAME="RA53409ST-29B">29b </A> With zirconium:
Epstein OL.
Seo JM.
Masalov N.
Cha JK.
Org.
Lett.
2005,
7:
2105
<A NAME="RA53409ST-29C">29c </A> For a catalytic system
using a silver-catalyzed silylene transfer strategy, see:
Takahashi T.
Suzuki N.
Hasegawa M.
Nitto Y.
Aoyagi K.
Saburi M.
Chem. Lett.
1992,
331
<A NAME="RA53409ST-29D">29d </A>
Cirakovic J.
Driver TG.
Woerpel KA.
J. Am. Chem. Soc.
2002,
124:
9370
<A NAME="RA53409ST-29E">29e </A>
Cirakovic J.
Driver TG.
Woerpel KA.
J. Org. Chem.
2004,
69:
4007
For examples on other oxametallacycles,
see the following. With titanium:
<A NAME="RA53409ST-30A">30a </A>
Cohen SA.
Bercaw JE.
Organometallics
1985,
4:
1006
<A NAME="RA53409ST-30B">30b </A> With zirconium:
Thorn MG.
Hill JE.
Waratuke SA.
Johnson ES.
Fanwick PE.
Rothwell IP.
J. Am. Chem. Soc.
1997,
119:
8630
<A NAME="RA53409ST-30C">30c </A> With rhodium:
Suzuki N.
Rousset CJ.
Aoyagi K.
Kotora M.
Takahashi T.
Hasegawa M.
Nitto Y.
Saburi M.
J. Organomet.
Chem.
1994,
473:
117
<A NAME="RA53409ST-30D">30d </A>
Godard C.
Duckett SB.
Parsons S.
Perutz RN.
Chem. Commun.
2003,
2332
For a review on the nickel-catalyzed
reductive coupling reactions, see:
<A NAME="RA53409ST-31A">31a </A> For a general reference
on organonickel chemistry, see:
Montgomery J.
Angew.
Chem. Int. Ed.
2004,
43:
3890
<A NAME="RA53409ST-31B">31b </A> On regioselectivity
and enantioselectivity in nickel-catalyzed reductive coupling reactions
of alkynes, see:
Modern Organonickel
Chemistry
Tamaru Y.
Wiley-VCH;
Weinheim:
2005.
<A NAME="RA53409ST-31C">31c </A>
Moslin RM.
Moslin KM.
Jamison TF.
Chem. Commun.
2007,
4441
For nickel(0)-induced carbon-carbon
linkage between alkenes and carbon dioxide, see:
<A NAME="RA53409ST-32A">32a </A>
Hoberg H.
Schaefer D.
J. Organomet. Chem.
1982,
236:
C28
<A NAME="RA53409ST-32B">32b </A>
Hoberg H.
Schaefer D.
J. Organomet. Chem.
1983,
251:
C51
<A NAME="RA53409ST-32C">32c </A>
Hoberg H.
Peres Y.
Milchereit A.
J.
Organomet. Chem.
1986,
307:
C38
<A NAME="RA53409ST-32D">32d </A>
Hoberg H.
Peres Y.
Milchereit A.
J.
Organomet. Chem.
1986,
307:
C41
<A NAME="RA53409ST-32E">32e </A>
Hoberg H.
Peres Y.
Krueger C.
Tsay YH.
Angew. Chem.
1987,
99:
799
<A NAME="RA53409ST-32F">32f </A> For catalytic reductive carboxylation
of styrene, see:
Hoberg H.
Heger G.
Krueger C.
Tsay YH.
J. Organomet. Chem.
1988,
348:
261
<A NAME="RA53409ST-32G">32g </A>
Williams CM.
Johnson JB.
Rovis T.
J. Am. Chem. Soc.
2008,
130:
14936
For the use of isocyanates with α-olefins,
see:
<A NAME="RA53409ST-33A">33a </A>
Hoberg H.
Sümmermann K.
Milchereit A.
Angew.
Chem.
1985,
97:
321
<A NAME="RA53409ST-33B">33b </A>
Hoberg H.
Sümmermann K.
Milchereit A.
J.
Organomet. Chem.
1985,
288:
237
<A NAME="RA53409ST-33C">33c </A>
Hoberg H.
Hernandez E.
J. Chem. Soc., Chem. Commun.
1986,
544
<A NAME="RA53409ST-33D">33d </A>
Hoberg H.
Hernandez E.
J. Organomet. Chem.
1986,
311:
307
<A NAME="RA53409ST-33E">33e </A>
Hernandez E.
Hoberg H.
J. Organomet. Chem.
1987,
328:
403
<A NAME="RA53409ST-33F">33f </A>
Hoberg H.
Sümmermann K.
Hernandez E.
Ruppin C.
Guhl D.
J.
Organomet. Chem.
1988,
344:
C35
<A NAME="RA53409ST-33G">33g </A>
Hoberg H.
J.
Organomet. Chem.
1988,
358:
507
<A NAME="RA53409ST-33H">33h </A>
Hoberg H.
Guhl D.
J. Organomet. Chem.
1990,
384:
C43
For the use of isocyanates with
activated alkenes, see:
<A NAME="RA53409ST-34A">34a </A>
Hernandez E.
Hoberg H.
J. Organomet. Chem.
1986,
315:
245
<A NAME="RA53409ST-34B">34b </A>
Hoberg H.
Hernandez E.
Guhl D.
J. Organomet.
Chem.
1988,
339:
213
<A NAME="RA53409ST-34C">34c </A>
Hoberg H.
Guhl D.
J. Organomet. Chem.
1989,
375:
245
<A NAME="RA53409ST-34D">34d </A>
Hoberg H.
Nohlen M.
J. Organomet. Chem.
1990,
382:
C6
<A NAME="RA53409ST-34E">34e </A>
Hoberg H.
Guhl D.
Betz P.
J.
Organomet. Chem.
1990,
387:
233
<A NAME="RA53409ST-34F">34f </A>
Hoberg H.
Nohlen M.
J. Organomet. Chem.
1991,
412:
225
For steric (cone angles) and electronic
properties (νCO values) of organophosphines,
see:
<A NAME="RA53409ST-35A">35a </A>
Rahman MM.
Liu H.-Y.
Eriks K.
Prock A.
Giering WP.
Organometallics
1989,
8:
1
<A NAME="RA53409ST-35B">35b </A>
Tolman CA.
Chem. Rev.
1977,
77:
313
<A NAME="RA53409ST-35C">35c </A>
Otto S.
J.
Chem. Crystallogr.
2001,
31:
185
<A NAME="RA53409ST-35D">35d </A>
Riihimaki H.
Kangas T.
Suomalainen P.
Reinius
HK.
Jaaskelainen S.
Haukka M.
Krause AOI.
Pakkanen TA.
Pursiainen JT.
J. Mol. Catal.
A: Chem.
2003,
200:
81
<A NAME="RA53409ST-35E">35e </A>
Steinmetz WE.
Quant. Struct.-Act. Relat.
1996,
15:
1 ; The frequency for (o -anisyl)3 P
was estimated from (p -anisyl)3 P
assuming they have similarly electron-donating properties. Ph3 P,
(p -MeC6 H4 )3 P,
(p -FC6 H4 )3 P
and (p -F3 CC6 H4 )3 P
have the same cone angle (145˚) according to ref. 35a
For recent reviews of NHC ligands
in transition-metal catalysis, see:
<A NAME="RA53409ST-36A">36a </A>
Weskamp T.
Bohm VPW.
Herrmann WA.
J. Organomet. Chem.
2000,
600:
12
<A NAME="RA53409ST-36B">36b </A>
Herrmann WA.
Angew. Chem. Int. Ed.
2002,
41:
1290
<A NAME="RA53409ST-36C">36c </A>
Crudden CM.
Allen DP.
Coord.
Chem. Rev.
2004,
248:
2247
<A NAME="RA53409ST-36D">36d </A>
Viciu MS.
Nolan SP.
Top.
Organomet. Chem.
2005,
14:
241
<A NAME="RA53409ST-36E">36e </A>
Crabtree RH.
J. Organomet. Chem.
2005,
690:
5451
For a recent review on the nickel-catalyzed
hydrovinylation, see:
<A NAME="RA53409ST-37A">37a </A> On the dimerization of
ethylene and propylene, see:
RajanBabu TV.
Chem.
Rev.
2003,
103:
2845
<A NAME="RA53409ST-37B">37b </A> On the nickel-catalyzed
asymmetric hydrovinylation of vinylarenes (coupling with ethylene),
see:
Pillai SM.
Ravindranathan M.
Sivaram S.
Chem. Rev.
1986,
86:
353
<A NAME="RA53409ST-37C">37c </A>
Nomura N.
Jin J.
Park H.
RajanBabu TV.
J. Am. Chem. Soc.
1998,
120:
459
For examples of the isomerization
of olefins by transition-metal hydrides, see the following. With
nickel:
<A NAME="RA53409ST-38A">38a </A> With ruthenium:
Tolman CA.
J. Am. Chem. Soc.
1972,
94:
2994
<A NAME="RA53409ST-38B">38b </A> With rhodium:
Wakamatsu H.
Nishida M.
Adachi N.
Mori M.
J. Org. Chem.
2000,
65:
3966
<A NAME="RA53409ST-38C">38c </A>
Morrill TC.
D’Souza CA.
Organometallics
2003,
22:
1626
For a theoretical comparison of
palladium- and nickel-catalyzed Heck reactions, see:
<A NAME="RA53409ST-39A">39a </A> For the detection of a palladium
hydride species in the Heck reaction, see:
Lin
B.-L.
Liu L.
Fu Y.
Luo S.-W.
Chen Q.
Guo Q.-X.
Organometallics
2004,
23:
2114
<A NAME="RA53409ST-39B">39b </A>
Hills ID.
Fu GC.
J.
Am. Chem. Soc.
2004,
126:
13178
For [M(NHC)H] complexes
of unusually high stability, see:
<A NAME="RA53409ST-40A">40a </A>
Clement ND.
Cavell KJ.
Jones C.
Elsevier CJ.
Angew.
Chem. Int. Ed.
2004,
43:
1277
<A NAME="RA53409ST-40B">40b </A>
Viciano M.
Mas-Marzá E.
Poyatos M.
Sanaú M.
Crabtree RH.
Peris E.
Angew. Chem.
Int. Ed.
2005,
44:
444
<A NAME="RA53409ST-41">41 </A> For the use of an electron-deficient
alkene to facilitate the reductive elimination of R-R from [R2 Ni(bipy)] species, see:
Yamamoto T.
Yamamoto A.
Ikeda S.
J. Am. Chem. Soc.
1971,
93:
3350
For the use of electron-deficient
styrenes as additives in catalysis, see:
<A NAME="RA53409ST-42A">42a </A>
Giovannini R.
Studemann T.
Dussin G.
Knochel P.
Angew. Chem. Int. Ed.
1998,
37:
2387
<A NAME="RA53409ST-42B">42b </A>
Giovannini R.
Studemann T.
Devasagayaraj A.
Dussin G.
Knochel P.
J.
Org. Chem.
1999,
64:
3544
<A NAME="RA53409ST-42C">42c </A> For the use of methyl
acrylate, see:
Bercot EA.
Rovis T.
J. Am. Chem. Soc.
2002,
124:
174
<A NAME="RA53409ST-42D">42d </A> For the use of fumaronitrile,
see:
Lau J.
Sustmann R.
Tetrahedron
Lett.
1985,
26:
4907
<A NAME="RA53409ST-42E">42e </A> For the use of dimethyl
fumarate, see:
Sustmann R.
Lau J.
Zipp M.
Tetrahedron Lett.
1986,
27:
5207
<A NAME="RA53409ST-42F">42f </A>
van Asselt R.
Elsevier CJ.
Tetrahedron
1994,
50:
323
It was shown that certain organophosphorus
compounds accelerate reductive elimination from a nickel complex (albeit
not in a catalytic reaction). The authors attributed the effect
to the size of the phosphorus additive rather than its electronic
nature:
<A NAME="RA53409ST-43A">43a </A> For the use of Ph3 P
as an additive to stabilize an [Ni(NHC)] catalyst,
see:
Komiya S.
Abe Y.
Yamamoto A.
Yamamoto T.
Organometallics
1983,
2:
1466
<A NAME="RA53409ST-43B">43b </A>
Sawaki R.
Sato Y.
Mori M.
Org.
Lett.
2004,
6:
1131
The effects of phosphorus ligands
upon reductive elimination from [Ni(NHC)alkyl] complexes
to give alkyl imidazolium salts have been studied. In contrast,
our observation that the NHC was not consumed suggests that one
of the other ligands (for example H or OTf) significantly affects
the properties and behavior of the metal complex:
<A NAME="RA53409ST-44A">44a </A>
McGuinness DS.
Saendig N.
Yates BF.
Cavell
KJ.
J.
Am. Chem. Soc.
2001,
123:
4029
<A NAME="RA53409ST-44B">44b </A>
Clement ND.
Cavell KJ.
Angew.
Chem. Int. Ed.
2004,
43:
3845
<A NAME="RA53409ST-45A">45a </A>
Liang L.
Feng X.
Liu J.
Rieke PC.
Fryxell GE.
Macromolecules
1998,
31:
7845
<A NAME="RA53409ST-45B">45b </A>
Pelton R.
Adv.
Colloid Interface Sci.
2000,
85:
1
<A NAME="RA53409ST-45C">45c </A>
Maeda Y.
Nakamura T.
Ikeda I.
Macromolecules
2001,
34:
1391
<A NAME="RA53409ST-46">46 </A> Beak has also reported regioselective β′-lithiation
and alkylation of α,β-unsaturated amides:
Beak P.
Kempf
DJ.
Wilson KD.
J. Am. Chem. Soc.
1985,
107:
4745
For examples of reactions between
olefins and phenyl isocyanate with tin(IV) chloride, see:
<A NAME="RA53409ST-47A">47a </A>
Baker JW.
Holdsworth JB.
J.
Chem. Soc.
1945,
724
<A NAME="RA53409ST-47B">47b </A> For examples of the addition
of iodine or chlorosulfonyl isocyanates to unsymmetrical olefins,
see:
Baker JW.
An. Real Soc.
Esp. Fis. Quim., B
1949,
45:
381
<A NAME="RA53409ST-47C">47c </A>
Drefahl G.
Ponsold K.
Chem. Ber.
1960,
93:
519
<A NAME="RA53409ST-47D">47d </A>
Moriconi EJ.
Kelly JF.
J.
Org. Chem.
1968,
33:
3036
<A NAME="RA53409ST-47E">47e </A>
Hassner A.
Hoblitt RP.
Heathcock C.
Kropp JE.
Lorber M.
J.
Am. Chem. Soc.
1970,
92:
1326
<A NAME="RA53409ST-48">48 </A> On deprotection, see:
Lacey RN.
J. Chem. Soc.
1960,
1633
<A NAME="RA53409ST-49A">49a </A>
Duong HA.
Cross MJ.
Louie J.
J. Am. Chem. Soc.
2004,
126:
11438
<A NAME="RA53409ST-49B">49b </A>
Duong HA.
Louie J.
Tetrahedron
2006,
62:
7552
<A NAME="RA53409ST-50A">50a </A>
Duong HA.
Tekavec TN.
Arif AM.
Louie J.
Chem. Commun.
2004,
112
<A NAME="RA53409ST-50B">50b </A>
Duong HA.
Cross MJ.
Louie J.
Org. Lett.
2004,
6:
4679
<A NAME="RA53409ST-51A">51a </A>
Posner GH.
An Introduction to
Synthesis Using Organocopper Reagents
Wiley-Interscience;
New
York:
1980.
<A NAME="RA53409ST-51B">51b </A> On catalyzed conjugate
addition, see:
Perlmutter P.
Conjugate
Addition Reactions in Organic Synthesis
Pergamon;
Oxford:
1992.
<A NAME="RA53409ST-51C">51c </A>
Lopez F.
Minnaard AJ.
Feringa BL.
Acc. Chem. Res.
2007,
40:
179
<A NAME="RA53409ST-51D">51d </A>
Christoffers J.
Koripelly G.
Rosiak A.
Rossle M.
Synthesis
2007,
1279
<A NAME="RA53409ST-51E">51e </A>
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
For pioneering work in chlorotrimethylsilane-modified dialkylcuprate
conjugate addition reactions, see:
<A NAME="RA53409ST-52A">52a </A>
Corey EJ.
Hannon FJ.
Boaz NW.
Tetrahedron
1989,
45:
545
<A NAME="RA53409ST-52B">52b </A>
Horiguchi Y.
Komatsu M.
Kuwajima I.
Tetrahedron Lett.
1989,
30:
7087
For thermal reactions, see:
<A NAME="RA53409ST-53A">53a </A> For Lewis acid promoted reactions,
see:
Albisetti CJ.
Fisher NG.
Hogsed MJ.
Joyce RM.
J. Am. Chem. Soc.
1956,
78:
2637
<A NAME="RA53409ST-53B">53b </A>
Büchi G.
Koller E.
Perry CW.
J. Am. Chem. Soc.
1964,
86:
5646
<A NAME="RA53409ST-53C">53c </A>
Snider BB.
Deutsch EA.
J.
Org. Chem.
1983,
48:
1822
<A NAME="RA53409ST-54">54 </A> For enal- and enone-derived coupling
reactions of allylnickel complexes (stoichiometric in nickel sunlamp irradiation),
see:
Johnson JR.
Tully PS.
Mackenzie
PB.
Sabat M.
J. Am. Chem. Soc.
1991,
113:
6172
<A NAME="RA53409ST-55">55 </A> On using allylboron reagents and
enones, see:
Sieber JD.
Liu S.
Morken JP.
J.
Am. Chem. Soc.
2007,
129:
2214
<A NAME="RA53409ST-56">56 </A> For nickel-catalyzed intermolecular
coupling of enones and alkynes, see:
Herath A.
Thompson BB.
Montgomery J.
J.
Am. Chem. Soc.
2007,
129:
8712
For the preparation of geometrically
defined enolsilanes from aldehydes and ketones, see:
<A NAME="RA53409ST-57A">57a </A>
House HO.
Czuba LJ.
Gall M.
Olmstead HD.
J.
Org. Chem.
1969,
34:
2324
<A NAME="RA53409ST-57B">57b </A>
Heathcock CH.
Buse CT.
Kleschick WA.
Pirrung MC.
Sohn JE.
Lampe J.
J.
Org. Chem.
1980,
45:
1066
<A NAME="RA53409ST-57C">57c </A>
Corey EJ.
Gross AW.
Tetrahedron
Lett.
1984,
25:
495
<A NAME="RA53409ST-57D">57d </A>
Hall PL.
Gilchrist JH.
Collum DB.
J. Am. Chem. Soc.
1991,
113:
9571
<A NAME="RA53409ST-57E">57e </A>
Denmark SE.
Pham SM.
J.
Org. Chem.
2003,
68:
5045
For general reviews on enolsilane
reactions, see:
<A NAME="RA53409ST-58A">58a </A>
Brownbridge P.
Synthesis
1983,
85
<A NAME="RA53409ST-58B">58b </A>
Kuwajima I.
Nakamura E.
Acc. Chem. Res.
1985,
18:
181
<A NAME="RA53409ST-58C">58c </A>
Berrisford DJ.
Angew. Chem., Int. Ed. Engl.
1995,
34:
178
On protonation, see:
<A NAME="RA53409ST-59A">59a </A> On α-chlorination,
see:
Ishihara K.
Nakashima D.
Hiraiwa Y.
Yamamoto H.
J.
Am. Chem. Soc.
2003,
125:
24
<A NAME="RA53409ST-59B">59b </A> On fluorination, see:
Zhang Y.
Shibatomi K.
Yamamoto H.
J. Am. Chem. Soc.
2004,
126:
15038
<A NAME="RA53409ST-59C">59c </A> On epoxidation, see:
Cahard D.
Audouard C.
Plaquevent JC.
Roques N.
Org.
Lett.
2000,
2:
3699
<A NAME="RA53409ST-59D">59d </A>
Davis FA.
Sheppard AC.
Chen BC.
Haque MS.
J.
Am. Chem. Soc.
1990,
112:
6679
<A NAME="RA53409ST-59E">59e </A> On dihydroxylation, see:
Ishii A.
Kojima J.
Mikami K.
Org. Lett.
1999,
1:
2013
<A NAME="RA53409ST-59F">59f </A> On aldol reactions, see:
Morikawa K.
Park J.
Andersson PG.
Hashiyama T.
Sharpless KB.
J. Am. Chem. Soc.
1993,
115:
8463
<A NAME="RA53409ST-59G">59g </A>
Evans DA.
Masse CE.
Wu J.
Org. Lett.
2002,
4:
3375
<A NAME="RA53409ST-59H">59h </A>
Evans DA.
Wu J.
Masse CE.
MacMillan DWC.
Org.
Lett.
2002,
4:
3379
<A NAME="RA53409ST-60">60 </A>
Murakami M.
Ashida S.
Chem. Commun.
2006,
4599