Abstract
Chemical modification of polybutadiene was achieved by intermolecular
hydroacylation of α,ω-diol with the vinyl group of
polybutadiene using a rhodium(I) complex.
Key words
C-H activation - homogeneous catalysis - transition metals - polymers - rhodium
References and Notes
<A NAME="RU05609ST-1A">1a </A>
McGrath MP.
Sall ED.
Tremont SJ.
Chem.
Rev.
1995,
95:
381
<A NAME="RU05609ST-1B">1b </A>
Boffa LS.
Novak BN. In
Transition Metal Catalysis in Macromolecular
Design , ACS Symposium Series 760
Jun C.-H.
Lee H.
Hong J.-B.
Lee D.-Y.
American Chemical
Society;
Washington DC:
1988.
p.94
<A NAME="RU05609ST-2A">2a </A>
Im-Erbsin S.
Prasassarakich P.
Rempel GL.
J. Appl. Polym. Sci.
2004,
93:
854
<A NAME="RU05609ST-2B">2b </A>
Scott PJ.
Rempel GL.
Macromolecules
1992,
25:
2811
<A NAME="RU05609ST-2C">2c </A>
Tremont SJ.
Remsen EE.
Macromolecules
1990,
23:
1984
<A NAME="RU05609ST-3A">3a </A>
Wideman LG. inventors; US Patent 5,134,200.
<A NAME="RU05609ST-3B">3b </A>
McEntire EE, and
Knifton JF. inventors; US
Patent 4,657,984.
<A NAME="RU05609ST-4A">4a </A>
Ajjou AN.
Alper H.
Macromolecules
1996,
29:
1784
<A NAME="RU05609ST-4B">4b </A>
Narayanan P.
Kaye B.
Cole-Hamilton DJ.
J.
Mater. Chem.
1993,
3:
19
<A NAME="RU05609ST-4C">4c </A>
Narayanan P.
Iraqi A.
Cole-Hamilton DJ.
J.
Mater. Chem.
1992,
2:
1149
<A NAME="RU05609ST-4D">4d </A>
Narayanan P.
Clubley BG.
Cole-Hamilton DJ.
J. Chem. Soc., Chem. Commun.
1991,
1628
<A NAME="RU05609ST-5A">5a </A>
Chauhan BPS.
Balagam B.
Macromolecules
2006,
39:
2010
<A NAME="RU05609ST-5B">5b </A>
Iraqi A.
Seth S.
Vincent A.
Cole-Hamilton DJ.
Watkinson MD.
Graham IM.
Jeffrey D.
J.
Mater. Chem.
1992,
2:
1057
<A NAME="RU05609ST-5C">5c </A>
Guo X.
Rempel GL.
Macromolecules
1992,
25:
883
<A NAME="RU05609ST-5D">5d </A>
Guo X.
Farwaha R.
Rempel GL.
Macromolecules
1990,
23:
5047
<A NAME="RU05609ST-6">6 </A>
Jo E.-A.
Cho E.-G.
Jun C.-H.
Synlett
2007,
7:
1059
<A NAME="RU05609ST-7A">7a </A>
Kim J.-H.
Jun C.-H.
Bull.
Korean Chem. Soc.
1999,
20:
27
<A NAME="RU05609ST-7B">7b </A>
Jun C.-H.
Kang J.-B.
Kim Y.-H.
J.
Organomet. Chem.
1993,
458:
193
<A NAME="RU05609ST-8">8 </A>
Jun C.-H.
Hwang D.-C.
Polymer
1998,
39:
7143
<A NAME="RU05609ST-9">9 </A>
The amount of hydroacylation of the
vinyl groups was calculated by the following equation: incorporation
rate (%) = e /(b +d +e ) × 100, where ‘a ’ is the internal olefin, ‘b ’ is the unreacted terminal
olefin, ‘c ’ is the
hydrogenated internal olefin, ‘d ’ is
the hydrogenated terminal olefin and ‘e ’ is
the hydroacylated vinyl group. a = (A-B/2)/T, b = B/T, c = C/T, d = 2/3D/T, e = E/T,
where A is the area of the 5.3-5.6 ppm internal and vinylic
-CH, B is the area of the 4.9-5.0 ppm integral (vinylic
CH2 ), D is the area of the 0.8-0.9 ppm integral
(hydrogenated terminal olefin), E is the area of the 2.3-2.6
ppm integral (α-CH2 to CO), and C = 55/45 (B+2/3D+E)-A+B/2.
T = (A-B/2)+C+B+2/3D+E
(T is the sum of the area of unreacted internal olefin, hydrogenated internal
olefin, unreacted terminal olefin, hydrogenated terminal olefin,
and hydroacylated vinyl group).
<A NAME="RU05609ST-10">10 </A>
Monitoring the ratio of the integration
of -CH2 OH and
a-CH2 in the reaction of 1b with 7a revealed that the integration of the
a-CH2 group of -CH2 OH decreased as the amount
of 7a used decreased. With less than 200
mol% of 7a , based on the amount
of vinyl group in polybutadiene, less than a 1:4 ratio was determined,
suggesting that some alcohol groups in 8a may
further react with the other vinyl groups to afford intermolecular
dicarbonyl polymers.