References and Notes
<A NAME="RG23009ST-1">1</A>
Modern
Arylation Methods
Ackermann L.
Wiley-VCH;
Weinheim:
2009.
<A NAME="RG23009ST-2">2</A>
Transition
Metals for Organic Synthesis
2nd ed.:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RG23009ST-3">3</A>
Tsuji J.
Palladium Reagents and Catalysts
2nd
ed.:
Wiley;
Chichester:
2004.
<A NAME="RG23009ST-4">4</A>
Suzuki A.
J.
Organomet. Chem.
1999,
576:
147
<A NAME="RG23009ST-5">5</A>
Littke AF.
In Modern Arylation Methods
Ackermann L.
Wiley-VCH;
Weinheim:
2009.
p.25
<A NAME="RG23009ST-6">6</A>
Herrmann WA.
Angew.
Chem. Int. Ed.
2002,
41:
1290
<A NAME="RG23009ST-7">7</A>
N-Heterocyclic
Carbenes in Synthesis
Nolan SP.
Wiley-VCH;
Weinheim:
2006.
For selected recent examples of
and reviews on palladium-catalyzed Suzuki-Miyaura reactions
with aryl-substituted nucleophiles, see:
<A NAME="RG23009ST-8A">8a</A>
Organ MG.
Çalimsiz S.
Sayah M.
Hoi KH.
Lough AJ.
Angew. Chem. Int. Ed.
2009,
48:
2383
<A NAME="RG23009ST-8B">8b</A>
Diebolt O.
Braunstein P.
Nolan SP.
Cazin CSJ.
Chem. Commun.
2008,
3190
<A NAME="RG23009ST-8C">8c</A>
So CM.
Lau CP.
Kwong FY.
Angew.
Chem. Int. Ed.
2008,
47:
8059
<A NAME="RG23009ST-8D">8d</A>
Martin R.
Buchwald SL.
Acc. Chem. Res.
2008,
41:
1461
<A NAME="RG23009ST-8E">8e</A>
Doucet H.
Eur.
J. Org. Chem.
2008,
2013 ;
and references cited therein
For representative recent examples
involving the use of heteroaromatic nucleophiles, see:
<A NAME="RG23009ST-9A">9a</A>
Molander GA.
Canturk B.
Kennedy LE.
J. Org. Chem.
2009,
74:
973
<A NAME="RG23009ST-9B">9b</A>
Fleckenstein CA.
Plenio H.
J. Org. Chem.
2008,
73:
3236
<A NAME="RG23009ST-9C">9c</A>
Billingsley K.
Buchwald SL.
J. Am. Chem. Soc.
2007,
129:
3358
<A NAME="RG23009ST-9D">9d</A>
Billingsley KL.
Anderson KW.
Buchwald SL.
Angew. Chem. Int. Ed.
2006,
45:
3484
<A NAME="RG23009ST-9E">9e</A>
Kudo N.
Perseghini M.
Fu GC.
Angew.
Chem. Int. Ed.
2006,
45:
1282 ;
and references cited therein
<A NAME="RG23009ST-9F">9f</A> For ligand-free Suzuki-Miyaura
coupling reactions catalyzed by Pd/C, see:
Kitamura Y.
Sako S.
Udzu T.
Tsutsui A.
Maegawa T.
Monguchi Y.
Sajiki H.
Chem.
Commun.
2007,
5069
<A NAME="RG23009ST-9G">9g</A>
Maegawa T.
Kitamura Y.
Sako S.
Udzu T.
Sakurai A.
Tanaka A.
Kobayashi Y.
Endo K.
Bora U.
Kurita T.
Kozaki A.
Monguchi Y.
Sajiki H.
Chem. Eur. J.
2007,
13:
5937
<A NAME="RG23009ST-10A">10a</A>
Hapke M.
Brandt L.
Lützen A.
Chem. Soc. Rev.
2008,
37:
2782
<A NAME="RG23009ST-10B">10b</A>
Tyrrell E.
Brookes P.
Synthesis
2004,
469
<A NAME="RG23009ST-11">11</A>
Campeau L.-C.
Fagnou K.
Chem. Soc. Rev.
2007,
36:
1058
<A NAME="RG23009ST-12">12</A>
Dubrovina NV.
Börner A.
Angew. Chem. Int. Ed.
2004,
43:
5883
<A NAME="RG23009ST-13">13</A>
Ackermann L.
Synthesis
2006,
1557
<A NAME="RG23009ST-14">14</A>
Ackermann L. In Trivalent Phosphorus Compounds in Asymmetric
Catalysis, Synthesis and Applications
Börner A.
Wiley-VCH;
Weinheim:
2008.
p.831
For representative recent examples
of secondary phosphine oxides as preligands in catalytic C-C
bond formation, see:
<A NAME="RG23009ST-15A">15a</A>
Xu H.
Ekoue-Kovi K.
Wolf C.
J.
Org. Chem.
2008,
73:
7638
<A NAME="RG23009ST-15B">15b</A>
Ackermann L.
Vicente R.
Althammer A.
Org.
Lett.
2008,
10:
2299
<A NAME="RG23009ST-15C">15c</A>
Wolf C.
Ekoue-Kovi K.
Eur. J. Org. Chem.
2006,
1917
<A NAME="RG23009ST-15D">15d</A>
Ackermann L.
Org. Lett.
2005,
7:
3123
<A NAME="RG23009ST-15E">15e</A>
Li GY.
Angew.
Chem. Int. Ed.
2001,
40:
1513 ;
and references cited therein
<A NAME="RG23009ST-16">16</A>
Billingsley KL.
Buchwald SL.
Angew. Chem. Int.
Ed.
2008,
47:
4695
<A NAME="RG23009ST-17A">17a</A>
Yang DX.
Colletti SL.
Wu K.
Song M.
Li GY.
Shen HC.
Org.
Lett.
2009,
11:
381
<A NAME="RG23009ST-17B">17b</A> See also:
Deng JZ.
Paone DV.
Ginnetti AT.
Kurihara H.
Dreher SD.
Weissman SA.
Stauffer SR.
Burgey CS.
Org. Lett.
2009,
11:
345
<A NAME="RG23009ST-17C">17c</A> For recent examples of
cross-coupling reactions with MIDA boronates, see:
Knapp DM.
Gillis EP.
Burke MD.
J. Am. Chem. Soc.
2009,
131:
6961
<A NAME="RG23009ST-18A">18a</A>
Ackermann L.
Althammer A.
Chem.
Unserer Zeit
2009,
43:
74
<A NAME="RG23009ST-18B">18b</A>
Ackermann L.
Born R.
Spatz JH.
Althammer A.
Gschrei CJ.
Pure
Appl. Chem.
2006,
78:
209
<A NAME="RG23009ST-19">19</A>
Ackermann L.
Synlett
2007,
507
For selected recent representative
examples, see:
<A NAME="RG23009ST-20A">20a</A>
Ackermann L.
Mulzer M.
Org. Lett.
2008,
10:
5043
<A NAME="RG23009ST-20B">20b</A>
Ackermann L.
Althammer A.
Born R.
Angew.
Chem. Int. Ed.
2006,
45:
2619
<A NAME="RG23009ST-20C">20c</A>
Ackermann L.
Gschrei CJ.
Althammer A.
Riederer M.
Chem. Commun.
2006,
1419
<A NAME="RG23009ST-20D">20d</A>
Ackermann L.
Althammer A.
Org. Lett.
2006,
8:
3457
<A NAME="RG23009ST-20E">20e</A>
Ackermann L.
Born R.
Spatz JH.
Meyer D.
Angew. Chem. Int. Ed.
2005,
44:
7216
<A NAME="RG23009ST-20F">20f</A>
Ackermann L.
Born R.
Angew. Chem. Int. Ed.
2005,
44:
2444
<A NAME="RG23009ST-21">21</A>
Surry DS.
Buchwald SL.
Angew. Chem. Int.
Ed.
2008,
47:
6338
<A NAME="RG23009ST-22">22</A>
Enders D.
Tedeschi L.
Bats JW.
Angew.
Chem. Int. Ed.
2000,
39:
4605
<A NAME="RG23009ST-23">23</A>
Linghu X.
Potnick JR.
Johnson JS.
J. Am. Chem. Soc.
2004,
126:
3070
<A NAME="RG23009ST-24">24</A>
Analytical Data for HASPO 6d: Mp 202.9-203.4 ˚C. ¹H NMR
(300 MHz, CDCl3): δ = 7.67-7.45
(m, 6 H), 7.19-7.15 (m, 2 H), 6.94-6.78
(m, 8 H), 6.89 (d, J
H-P = 744
Hz, 1 H), 5.67 (d, J = 8.3
Hz, 1 H), 5.18 (d, J = 8.3
Hz, 1 H), 0.71 (s, 3 H), 0.68 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 162.5 (Cq,
¹
J
F-C = 248
Hz), 162.5 (Cq,
¹
J
F-C = 248
Hz), 162.3 (Cq,
¹
J
F-C = 248
Hz), 162.3 (Cq,
¹
J
F-C = 248
Hz), 139.3 (Cq, 4
J
F-C = 3
Hz), 139.3 (Cq, 4
J
F-C = 3
Hz), 138.7 (Cq, 4
J
F-C =
3
Hz), 134.5 (Cq, 4
J
F-C = 3
Hz), 130.7 (CH, ³
J
F-C = 8
Hz), 130.0 (CH, ³
J
F-C = 8
Hz), 128.6 (CH, ³
J
F-C = 8
Hz), 128.6 (CH, ³
J
F-C = 8
Hz), 115.6 (CH, ²
J
F-C = 21
Hz), 115.4 (CH, ²
J
F-C = 22
Hz), 114.6 (Cq), 114.5 (CH, ²
J
F-C = 22
Hz), 114.3 (CH, ²
J
F-C = 22
Hz), 88.7 (Cq), 87.6 (Cq), 80.0 (CH), 79.5 (CH),
26.8 (CH3), 26.6 (CH3). ³¹P
NMR (121 MHz, CDCl3): δ = -2.5. ¹9F
NMR (282 MHz, CDCl3): δ = -112.4
(m),
-112.9 (m), -113.9 (m), -114.1
(m). IR (KBr): 3424, 2993, 2903, 2354, 2344, 1601, 1506, 1268, 1161,
1082, 937, 847, 762 cm-¹. HR-MS (ESI): m/z calcd
for C31H24F4O5P: 583.1303;
found: 583.1306.
<A NAME="RG23009ST-25">25</A>
Synthesis of 3b (Table
[²]
, entry 1); Typical procedure:
A suspension of Pd2dba3 (4.6 mg, 0.005 mmol,
1.0 mol%), 6d (11.7 mg, 0.020
mmol, 4.0 mol%), K3PO4 (318 mg, 1.50 mmol), 1a (205 mg, 0.75 mmol), 2b (147 mg,
0.50 mmol) in 1,4-dioxane (2.0 mL) was stirred under N2 for
20 h at 110 ˚C. After the reaction mixture was
cooled to ambient temperature, MTBE (50 mL) and H2O (50
mL) were added. The separated aqueous phase was extracted with MTBE (3 × 50
mL). The combined organic layers were washed with brine (50 mL),
dried over Na2SO4 and concentrated in vacuo. The
remaining residue was purified by column chromatog-raphy on silica
gel (n-hexane-EtOAc, 9:1) to
yield 3b (114 mg, 78%) as a white
solid (mp 45.0 ˚C). ¹H NMR
(300 MHz, CDCl3): δ = 8.75 (dt, J = 4.8, 1.4
Hz, 1 H), 8.48 (s, 2 H), 7.91 (s, 1 H),
7.88-7.77 (m, 2 H), 7.40-7.29 (m, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 154.1 (Cq),
150.1 (CH), 141.3 (Cq), 137.2 (CH), 132.1 (Cq, ²
J
F-C = 33
Hz), 126.9 (CH, ³
J
F-C =
4
Hz), 123.6 (CH), 123.4 (Cq, ¹
J
F-C = 273
Hz), 122.3 (CH, ³
J
F-C = 4
Hz), 120.6 (CH). ¹9F NMR (282 MHz, CDCl3): δ = -62.9.
IR (KBr): 3897, 2927, 1591, 1455, 1382, 1279, 1136, 897, 785, 683
cm-¹. MS (EI): m/z (%) = 291 (100) [M+],
272 (22), 252 (10), 222 (38), 202 (12), 83 (28), 71 (34), 57 (66), 43
(64). HR-MS (EI): m/z calcd for C13H7F6N:
292.0555; found: 292.0557. The spectral data were in accordance
with those reported in the literature.¹6