References and Notes
For reviews, see:
<A NAME="RU08209ST-1A">1a</A>
Houpis IN.
Lee J.
Tetrahedron
2000,
56:
817
<A NAME="RU08209ST-1B">1b</A>
Beller M.
Seayad J.
Tillack A.
Jiao H.
Angew. Chem. Int. Ed.
2004,
43:
3368
<A NAME="RU08209ST-1C">1c</A> For example, there is a
report on gold- and silver-catalyzed addition of active methylene
compounds to styrenes, see:
Yao X.
Li C.-J.
J. Am. Chem. Soc.
2004,
126:
6884
<A NAME="RU08209ST-1D">1d</A> For an example of an intramolecular
reaction of 7-octene-2,4-dione, see:
Qian H.
Widenhoefer RA.
J. Am. Chem.
Soc.
2003,
125:
2056
<A NAME="RU08209ST-2A">2a</A>
Kuninobu Y.
Kawata A.
Takai K.
Org. Lett.
2005,
7:
4823
<A NAME="RU08209ST-2B">2b</A> For an indium-catalyzed
example, see:
Nakamura M.
Endo K.
Nakamura E.
J. Am. Chem. Soc.
2003,
125:
13002
For the nucleophilic addition of β-enamino
esters to terminal alkynes, see:
<A NAME="RU08209ST-3A">3a</A>
Fujimoto T.
Endo K.
Tsuji H.
Nakamura M.
Nakamura E.
J. Am.
Chem. Soc.
2008,
130:
4492
<A NAME="RU08209ST-3B">3b</A>
Chun YS.
Ko YO.
Shin H.
Lee S.-g.
Org. Lett.
2009,
11:
3414
There have been several reports
on the nucleophilic addition of active methylene compounds to activated
allenes. See:
<A NAME="RU08209ST-4A">4a</A>
Paik YH.
Dowd P.
J. Org. Chem.
1986,
51:
2910
<A NAME="RU08209ST-4B">4b</A>
Lu C.
Lu X.
Org. Lett.
2002,
4:
4677
<A NAME="RU08209ST-4C">4c</A>
Patil NT.
Pahadi NK.
Yamamoto Y.
Synthesis
2004,
2186
<A NAME="RU08209ST-4D">4d</A>
Huang X.
Shen R.
Synthesis
2006,
2731
<A NAME="RU08209ST-5">5</A> There has been a report on the nucleophilic
addition of active methylene compounds to unactivated allenes. See:
Yamamoto Y.
Al-Masum M.
Fujiwara N.
Asao N.
Tetrahedron
Lett.
1995,
36:
2811
There have been several reports
on the intramolecular nucleophilic addition of active methylene
compounds to allenes. See:
<A NAME="RU08209ST-6A">6a</A>
Meguro M.
Kamijo S.
Yamamoto Y.
Tetrahedron
Lett.
1996,
37:
7453
<A NAME="RU08209ST-6B">6b</A>
Trost BM.
Michellys P.-Y.
Gerusz VJ.
Angew. Chem. Int. Ed.
1997,
36:
1750
For reviews on the transformations
of allenes, see:
<A NAME="RU08209ST-7A">7a</A>
Ma S.
Chem.
Rev.
2005,
105:
2829
<A NAME="RU08209ST-7B">7b</A>
Hassan HHAM.
Curr. Org. Synth.
2007,
4:
413
<A NAME="RU08209ST-7C">7c</A>
Ma S.
Aldrichimica Acta
2007,
40:
91
<A NAME="RU08209ST-7D">7d</A>
Bai T.
Ma S.
Jia G.
Coord.
Chem. Rev.
2009,
253:
423
<A NAME="RU08209ST-8">8</A>
This reaction did not proceed using
Re2(CO)10, ReCl3(PMe2Ph)3,
ReCl3(NCMe)(PPh3)2, ReCl3O(PPh3)2, Mn2(CO)10,
MnBr(CO)5, PdCl2, PtCl2, AuCl,
AuCl3, or GaCl3.
<A NAME="RU08209ST-9">9</A>
α-Alkenylated β-imino
ester 4a was obtained selectively as only
the E-form. One of the possible reasons
for this selectivity is that E-4a is thermodynamically more stable than
the Z-form of 4a.
<A NAME="RU08209ST-10">10</A>
Two equivalents of allene 2a are necessary to produce a mixture of α-alkenylated β-imino
esters 3a and 4a in
high yield because of the polymerization of 2a.
<A NAME="RU08209ST-11">11</A>
Yudha SS.
Kuninobu Y.
Takai K.
Angew.
Chem. Int. Ed.
2008,
47:
9318
<A NAME="RU08209ST-12">12</A>
The reaction did not proceed when
an N-alkyl β-imino ester [ethyl
(Z)-2-methyl-3-(propylamino)-2-butenoate] was employed
as a substrate.
<A NAME="RU08209ST-13">13</A>
6-Vinylideneundecane (1,1-disubstituted
allene), trideca-6,7-diene (internal allene), 1-(propa-1,2-dienyl)benzene (phenyl-substituted
allene), and benzyl buta-2,3-dienoate (ester-substituted allene)
did not promote the reaction.
<A NAME="RU08209ST-14">14</A>
The reaction did not proceed with
reactive alkenes, such as styrene or norbornene, in place of allenes.
<A NAME="RU08209ST-15">15</A> There is a report that a mono-alkylated
allene coordinates to a rhenium center at the internal olefinic
moiety of the allene. Therefore, we postulated a similar intermediate - an
allene coordinated to a rhenium center at the internal olefinic position.
See:
Casey CP.
Brady JT.
Organometallics
1998,
17:
4620
We have already reported on the
formation of rhenacycle intermediates. See:
<A NAME="RU08209ST-16A">16a</A>
Kuninobu Y.
Kawata A.
Takai K.
J.
Am. Chem. Soc.
2006,
128:
11368
<A NAME="RU08209ST-16B">16b</A>
Kuninobu Y.
Yu P.
Takai K.
Chem.
Lett.
2007,
36:
1162
<A NAME="RU08209ST-16C">16c</A>
Kuninobu Y.
Takata H.
Kawata A.
Takai K.
Org. Lett.
2008,
10:
3133
<A NAME="RU08209ST-16D">16d</A>
Kuninobu Y.
Kawata A.
Nishi M.
Takata H.
Takai K.
Chem. Commun.
2008,
6360 ; See also: refs. 2 and 9
<A NAME="RU08209ST-17">17</A>
The products 3 and 4 are quite different from cyclopentenes, which
are derived from β-keto esters and terminal allenes (see,
ref. 9). The reason is not clear. One possible reason for the difference
is that the formation of an allylic intermediate (step 3 or 5) by
the flow of electrons from a nitrogen atom is easier than with an
oxygen atom. Therefore, in the case of β-enamino esters, α-alkenylated
products were formed instead of the formation of cyclopentenes by
intramolecular nucleophilic cyclization.
<A NAME="RU08209ST-18">18</A>
Typical Procedure for Rhenium-Catalyzed
Addition of β-Enamino Esters to Allenes. A mixture of β-enamino
ester (0.250 mmol), allene (0.500 mmol), [ReBr(CO)3(thf)]2 (5.3 mg,
0.0063 mmol), and toluene (0.25 mL) was stirred at 135 ˚C.
After stirring for 12 h, [RhCl(cod)]2 (3.1
mg, 0.0063 mmol) was added to the crude mixture. After the mixture was
stirred at 135 ˚C for 12 h, the solvent was removed
in vacuo. The product was isolated by column chromatography on silica
gel, which was pre-treated with Et3N, using
n-hexane-ethyl acetate (30:1)
as an eluent.
<A NAME="RU08209ST-19">19</A>
Ethyl 2-methyl-2-(1-phenyliminoethyl)-3-(3-phenyl-propyl)-3-butenoate
(3a) and ethyl 2,3-dimethyl-6-phenyl-2-(1-phenyliminoethyl)-3-hexenoate
(4a). ¹H NMR (400 MHz,
CDCl3): δ = 1.26 (t, J = 7.2
Hz, 3H), 1.56 (s, 3H), 1.66 (s, 3H), 1.67 (s, 3H), 2.42 (q, J = 7.3 Hz,
2H), 2.71 (t, J = 7.3 Hz,
2H), 4.19 (q, J = 7.2
Hz, 2H), 5.08 (s, 1H, 3a), 5.15 (s, 1H, 3a), 5.39 (t, J = 7.3
Hz, 1H, 4a), 6.63 (d, J = 8.7
Hz, 2H), 7.03 (t, J = 7.5
Hz, 1H), 7.17-7.31 (m, 7H); ¹³C
NMR (100 MHz, CDCl3): δ (4a) = 14.1,
14.6, 17.5, 20.9, 30.0, 35.4, 60.8, 62.9, 118.7, 123.0, 125.8, 127.1,
128.3, 128.5, 128.9, 135.4, 141.8, 151.4, 171.6, 173.6; IR (nujol):
3061, 2930, 2251, 1731, 1595, 1453, 1365, 1249, 1096, 910, 802,
733, 699, 648 cm-¹; HRMS: m/z [M + Na]+ calcd
for C24H29NO2Na: 386.2096; found:
386.2104.