References and Notes
For reviews on desymmetrization
of diols, see:
<A NAME="RU10709ST-1A">1a </A>
Mori K.
Pure
Appl. Chem.
1994,
66:
1991
<A NAME="RU10709ST-1B">1b </A>
Periasamy M.
Aldrichimica
Acta
2000,
35:
89
<A NAME="RU10709ST-1C">1c </A>
Rendler S.
Oestreich M.
Angew. Chem. Int. Ed.
2008,
47:
248
<A NAME="RU10709ST-2A">2a </A>
Sano S.
Nakao M.
Takeyasu M.
Honjo T.
Nagao Y.
Lett.
Org. Chem.
2006,
3:
764
<A NAME="RU10709ST-2B">2b </A>
Sano S.
Nakao M.
Takeyasu M.
Yamamoto C.
Kitaike S.
Yoshioka Y.
Nagao Y.
Open
Org. Chem. J.
2009,
3:
22
<A NAME="RU10709ST-3">3 </A>
Chênevert R.
Courchesne G.
Pelchat N.
Bioorg.
Med. Chem.
2006,
14:
5389
<A NAME="RU10709ST-4A">4a </A>
Jung B.
Kang SH.
Proc.
Natl. Acad. Sci. U.S.A.
2007,
104:
1471
<A NAME="RU10709ST-4B">4b </A>
Jung B.
Hong MS.
Kang SH.
Angew. Chem.
Int. Ed.
2007,
46:
2616
<A NAME="RU10709ST-4C">4c </A>
Kim HC.
Kang SH.
Angew. Chem. Int. Ed.
2009,
48:
1827
<A NAME="RU10709ST-5">5 </A>
Honjo T.
Nakao M.
Sano S.
Shiro M.
Yamaguchi K.
Sei Y.
Nagao Y.
Org. Lett.
2007,
9:
509
<A NAME="RU10709ST-6A">6a </A>
Lipscomb WN.
Sträter N.
Chem. Rev.
1996,
96:
2375
<A NAME="RU10709ST-6B">6b </A>
Auld DS.
Biometals
2009,
22:
141
<A NAME="RU10709ST-7">7 </A>
Ishihara K.
Sakakura A.
Hatano M.
Synlett
2007,
686
For recent reviews on cinchona alkaloids
in asymmetric synthesis, see:
<A NAME="RU10709ST-8A">8a </A>
Kacprzak K.
Gawroński J.
Synthesis
2001,
961
<A NAME="RU10709ST-8B">8b </A>
Chen Y.
McDaid P.
Deng L.
Chem.
Rev.
2003,
103:
2965
<A NAME="RU10709ST-8C">8c </A>
Hoffmann HMR.
Frackenpohl J.
Eur.
J. Org. Chem.
2004,
4293
<A NAME="RU10709ST-8D">8d </A>
O’Donnell MJ.
Acc. Chem. Res.
2004,
37:
506
<A NAME="RU10709ST-8E">8e </A>
Lygo B.
Andrews BI.
Acc. Chem. Res.
2004,
37:
518
<A NAME="RU10709ST-8F">8f </A>
Ooi T.
Maruoka K.
Acc. Chem. Res.
2004,
37:
526
<A NAME="RU10709ST-8G">8g </A>
Tian S.-K.
Chen Y.
Hang J.
Tang L.
McDaid P.
Deng L.
Acc.
Chem. Res.
2004,
37:
621
<A NAME="RU10709ST-8H">8h </A>
Dalaigh CO.
Synlett
2005,
875
<A NAME="RU10709ST-8I">8i </A>
Marcelli T.
van Maarseveen JH.
Hiemstra H.
Angew. Chem. Int. Ed.
2006,
45:
7496
<A NAME="RU10709ST-8J">8j </A>
Shibata N.
Ishimaru T.
Nakamura S.
Toru T.
J. Fluorine Chem.
2007,
128:
469
<A NAME="RU10709ST-8K">8k </A>
Blaser
H.-U.
Studer M.
Acc. Chem. Res.
2007,
40:
1348
<A NAME="RU10709ST-8L">8l </A>
Ting A.
Schaus SE.
Eur. J. Org. Chem.
2007,
5797
<A NAME="RU10709ST-8M">8m </A>
Gaunt MJ.
Johansson CCC.
Chem.
Rev.
2007,
107:
5596
<A NAME="RU10709ST-8N">8n </A>
Chen Y.-C.
Synlett
2008,
1919
<A NAME="RU10709ST-8O">8o </A>
Connon SJ.
Synlett
2009,
354
<A NAME="RU10709ST-8P">8p </A>
Xu L.-W.
Luo J.
Lu Y.
Chem. Commun.
2009,
1807
<A NAME="RU10709ST-8Q">8q </A>
Wu L.-Y.
Bencivenni G.
Mancinelli M.
Mazzanti A.
Bartoli G.
Melchiorre P.
Angew. Chem. Int. Ed.
2009,
48:
7196
<A NAME="RU10709ST-9">9 </A>
The ¹ H NMR spectra
of a mixture of chiral ligand 1 and Et2 Zn
were complicated by multiple signals arising from rotamers of 1 . In the case of our previous results,
the structure of chiral sulfonamide-Zn complex (2:1) was determined
by X-ray crystallographic analysis.5 However, attempts
to crystallize the Zn complex of chiral ligand 1 were
unsuccessful.
<A NAME="RU10709ST-10">10 </A>
Oh SH.
Rho HS.
Lee JW.
Lee JE.
Youk SH.
Chin J.
Song CE.
Angew.
Chem. Int. Ed.
2008,
47:
7872
<A NAME="RU10709ST-11">11 </A>
The authors reported the experimental
results at the 126th annual meeting of the Pharmaceutical Society
of Japan, Sendai, Japan, 2006, abstract No. 4, pp. 137.
<A NAME="RU10709ST-12">12 </A>
Forbes DC.
Ene DG.
Doyle MP.
Synthesis
1998,
879
<A NAME="RU10709ST-13">13 </A>
Green TW.
Wuts PGM. In
Protective Groups in Organic Synthesis
3rd
ed.:
John Wiley and Sons;
New York:
1999.
p.86
<A NAME="RU10709ST-14">14 </A>
General Experimental
Procedure for a Modified Cinchona Alkaloid-Zinc Complex
Catalyzed Desymmetrization of Glycerol Derivatives
To
a solution of modified cinchona alkaloid 1 (6.0
mg, 0.01 mmol) in Et2 O (4 mL) was added Et2 Zn
(1.0 M in n -hexane, 10 µL, 0.01
mmol) at r.t. The mixture was stirred at r.t. for 10 min, and diol 9a (51.3 mg, 0.2 mmol) and Ac2 O
(28 µL, 0.3 mmol) were then added to the solution at 0 ˚C.
After stirring at 0 ˚C for 20 h, the reaction mixture was
treated with sat. aq NaHCO3 (5 mL) followed by extraction
with CHCl3 (75 mL). The extract was dried over anhyd
MgSO4 , filtered, and concentrated in vacuo. The oily
residue was purified by silica gel column chromatography (EtOAc-n -hexane, 1:1) to afford 9aa (46.3
mg, 78% yield, 86% ee) as a colorless oil. The
ee (%) of (S )-9aa (Scheme
[² ]
) was determined on a Chiralpak
IA, n -hexane-EtOH (3:1), flow
rate: 1 mL/min, detection: 254 nm]. The retention
times were 9.4 min [minor product, (R )-9aa ] and 12.2 min [major
product, (S )-9aa ], respectively.
The absolute configuration of (S )-9aa was explicitly determined by its chemical
conversion to acetonide (S )-15 {[α]D
²0 -3.1
(c 1.01, EtOH), lit.¹6 (R )-15 [α]D +5.8
(c 1.00, EtOH)}.
Scheme 2
<A NAME="RU10709ST-15">15 </A>
Spectroscopic
Data of 9aa -ea (Table 4)
Compound 9aa (R = Me):
colorless oil. ¹ H NMR (400 MHz, CDCl3 ): δ = 1.28
(3 H, s), 2.10 (3 H, s), 2.15 (1 H, s), 3.56-3.59 (2 H,
m), 3.79 (6 H, s), 4.17 (1 H, d, J = 11.7
Hz), 4.24 (1 H, d, J = 11.7
Hz), 4.48 (2 H, s), 6.38 (1 H, t, J = 2.2
Hz), 6.49 (2 H, d, J = 2.2
Hz). ¹³ C NMR (75 MHz, CDCl3 ): δ = 17.5,
20.9, 55.3, 64.6, 65.4, 65.7, 76.8, 99.4, 105.2, 141.1, 160.9, 171.1.
IR (neat): 3471, 2939, 2843, 1738, 1599, 1464, 1244, 1205, 1155,
1053 cm-¹ . ESI-MS: m/z calcd
for C15 H22 NaO6 : 321.1314; found:
321.1324 [M+ + Na]. Compound 9ba (R = Et):
colorless oil. ¹ H NMR (400 MHz, CDCl3 ): δ = 0.96
(3 H, t, J = 7.7
Hz), 1.60-1.72 (2 H, m), 2.10 (3 H, s), 2.21 (1 H, s),
3.57 (1 H, d, J = 12.0
Hz), 3.62 (1 H, d, J = 12.0
Hz), 3.79 (6 H, s), 4.20 (1 H, d, J = 11.7 Hz),
4.25 (1 H, d, J = 11.7
Hz), 4.45 (2 H, s), 6.37 (1 H, t, J = 2.2
Hz), 6.51 (2 H, d, J = 2.2
Hz). ¹³ C NMR (75 MHz, CDCl3 ): δ = 7.0,
20.9, 22.6, 55.3, 62.8, 63.6, 63.9, 78.6, 99.4, 105.2, 141.0, 160.9,
171.2. IR (neat): 3481, 2968, 1741, 1599, 1462, 1238, 1205, 1155,
1063 cm-¹ . ESI-MS: m/z calcd
for C16 H24 NaO6 : 335.1471; found:
335.1471 [M+ + Na]. Compound 9ca (R = i -Pr): colorless oil. ¹ H
NMR (400 MHz, CDCl3 ): δ = 1.01 (3 H,
d, J = 3.2
Hz), 1.03 (3 H, d, J = 3.2 Hz),
2.07-2.10 (4 H, m), 2.17-2.25 (1 H, m), 3.73-3.76
(2 H, m), 3.79 (6 H, s), 4.34 (1 H, d, J = 12.2
Hz), 4.36 (1 H, d, J = 12.2
Hz), 4.52 (1 H, d, J = 11.5
Hz), 4.54 (1 H, d, J = 11.5
Hz), 6.38 (1 H, t, J = 2.2
Hz), 6.52 (2 H, d, J = 2.2
Hz). ¹³ C NMR (75 MHz, CDCl3 ): δ = 17.06,
17.13, 21.0, 30.1, 55.3, 62.6, 64.5, 64.6, 79.7, 99.3, 105.0, 141.4,
160.9, 171.0. IR (neat): 3483, 2964, 1741, 1599, 1238, 1205, 1155,
1055 cm-¹ . ESI-MS: m/z calcd
for C17 H26 NaO6 : 349.1627; found: 349.1597 [M+ + Na]. Compound 9da (R = CH2 =CHCH2 ):
colorless oil. ¹ H NMR (400 MHz, CDCl3 ): δ = 2.10
(3 H, s), 2.21 (1 H, br s), 2.44 (2 H, d, J = 7.3
Hz), 3.60 (1 H, d, J = 12.0
Hz), 3.64 (1 H, d, J = 12.0
Hz), 3.78 (6 H, s), 4.21 (1 H, d, J = 12.0
Hz), 4.26 (1 H, d, J = 12.0
Hz), 4.52 (2 H, s), 5.14-5.20 (2 H, m), 5.81-5.92
(1 H, m), 6.38 (1 H, t, J = 2.2
Hz), 6.50 (2 H, d, J = 2.2 Hz). ¹³ C
NMR (75 MHz, CDCl3 ): δ = 20.9, 35.2,
55.3, 63.2, 63.9, 64.3, 78.3, 99.4, 105.3, 118.9, 132.2, 140.9,
160.8, 171.1. IR (neat): 3483, 2939, 1741, 1599, 1464, 1238, 1205, 1155,
1055 cm-¹ . ESI-MS: m/z calcd
for C17 H24 NaO6 : 347.1471; found:
347.1494 [M+ + Na]. Compound 9ea (R = Ph):
colorless oil. ¹ H NMR (400 MHz, CDCl3 ): δ = 2.06
(3 H, s), 2.22 (1 H, br s), 3.79 (6 H, s), 3.88-3.99 (2
H, m), 4.30 (1 H, d, J = 11.5
Hz), 4.35 (1 H, d, J = 11.5
Hz), 4.64 (2 H, s), 6.38 (1 H, t, J = 2.2
Hz), 6.50 (2 H, d, J = 2.2
Hz), 7.32-7.36 (1 H, m), 7.38-7.45 (4 H, m). ¹³ C
NMR (75 MHz, CDCl3 ): δ = 20.9, 55.3,
65.0, 65.3, 65.5, 80.5, 99.4, 105.2, 126.7, 128.3, 128.7, 138.5,
140.7, 160.9, 170.9. IR (neat): 3481, 2939, 1741, 1599, 1462, 1238,
1205, 1155, 1053 cm-¹ . ESI-MS: m/z calcd for C20 H24 NaO6 : 383.1471;
found: 383.1466 [M+ + Na].
<A NAME="RU10709ST-16">16 </A>
Wirz B.
Barner R.
Hübscher J.
J.
Org. Chem.
1993,
58:
3980