Abstract
The development of various deracemisation concepts from our laboratory
for secondary alcohols is summarised. The aim was to find alternatives
for dynamic kinetic resolution and related deracemisation concepts.
In our improved system, deracemisation is achieved via simultaneous
enantioselective oxidation and asymmetric reduction, thereby demonstrating
a rare example of concurrent oxidation and reduction in preparative
organic chemistry. Such concepts could also be exploited for the
racemisation of secondary alcohols through omitting the cofactor
recycling.
1 Introduction and Background
2 One Pot, Two Sequential Steps
3 Concurrent Oxidation and Reduction by Compartmentalisation
4 Orchestration of the Oxidation and Reduction
5 Racemisation
6 Conclusion
Key words
deracemisation - secondary alcohols - asymmetric
synthesis - biocatalysis - redox reactions
References
<A NAME="RA54809ST-1">1 </A>
Noyori R.
Ohkuma T.
Angew. Chem. Int. Ed.
2001,
40:
40
<A NAME="RA54809ST-2">2 </A>
Ma Y.
Liu H.
Chen L.
Cui X.
Zhu J.
Deng J.
Org. Lett.
2003,
5:
2103
<A NAME="RA54809ST-3A">3a </A>
Kula M.-R.
Kragl U.
Dehydrogenases in the Synthesis of Chiral
Compounds , In Stereoselective Biocatalysis
Patel RN.
Marcel
Dekker;
New York:
2000.
p.839
<A NAME="RA54809ST-3B">3b </A>
Patel RN.
Curr. Opin. Biotechnol.
2001,
12:
587
<A NAME="RA54809ST-3C">3c </A>
Nakamura K.
Matsuda T.
Reduction
of Ketones , In Enzyme Catalysis in Organic
Synthesis
Vol. 3:
Drauz K.
Waldmann H.
Wiley-VCH;
Weinheim:
2002.
p.991
<A NAME="RA54809ST-3D">3d </A>
Kroutil W.
Mang H.
Edegger K.
Faber K.
Curr. Opin. Chem. Biol.
2004,
8:
120
<A NAME="RA54809ST-3E">3e </A>
de Wildeman SMA.
Sonke T.
Schoemaker HE.
May O.
Acc.
Chem. Res.
2007,
40:
1260
<A NAME="RA54809ST-3F">3f </A>
Goldberg K.
Schroer K.
Lütz S.
Liese A.
Appl. Microbiol. Biotechnol.
2007,
76:
237
<A NAME="RA54809ST-3G">3g </A>
Moore JC.
Pollard DJ.
Kosjek B.
Devine PN.
Acc.
Chem. Res.
2007,
40:
1412
<A NAME="RA54809ST-4A">4a </A>
Arterburn JB.
Tetrahedron
2001,
57:
9765
<A NAME="RA54809ST-4B">4b </A>
Faller JW.
Lavoie AR.
Org.
Lett.
2001,
3:
3703
<A NAME="RA54809ST-4C">4c </A>
Schmid A.
Hollmann F.
Bühler B.
Oxidation of Alcohols , In Enzyme Catalysis in Organic Synthesis
Vol.
3:
Drauz K.
Waldmann H.
Wiley-VCH;
Weinheim:
2002.
p.991
<A NAME="RA54809ST-4D">4d </A>
Nishibayashi Y.
Yamauchi A.
Onodera G.
Uemura S.
J. Org. Chem.
2003,
68:
5875
<A NAME="RA54809ST-4E">4e </A>
Mandal SK.
Sigman MS.
J.
Org. Chem.
2003,
68:
7535
<A NAME="RA54809ST-4F">4f </A>
Edegger K.
Mang H.
Faber K.
Gross J.
Kroutil W.
J. Mol.
Catal. A: Chem.
2006,
251:
66
<A NAME="RA54809ST-5">5 </A>
Bornscheuer UT.
Bessler C.
Srinivas R.
Krishna SH.
Trends Biotechnol.
2002,
20:
433
<A NAME="RA54809ST-6">6 </A>
Faber K.
Chem.
Eur. J.
2001,
7:
5004
<A NAME="RA54809ST-7">7 </A> For a recent review on the deracemisation
of amino acids, see:
Servi S.
Tessaro D.
Pedrocchi-Fantoni G.
Coord. Chem.
Rev.
2008,
252:
715
<A NAME="RA54809ST-8A">8a </A>
Wallner SR.
Pogorevc M.
Trauthwein H.
Faber K.
Eng.
Life Sci.
2004,
4:
512
<A NAME="RA54809ST-8B">8b </A>
Gutierrez M.-C.
Furstoss R.
Alphand V.
Adv.
Synth. Catal.
2005,
347:
1051
<A NAME="RA54809ST-9A">9a </A>
Kim M.-J.
Ahn Y.
Park J.
Curr. Opin. Biotechnol.
2002,
13:
578
<A NAME="RA54809ST-9B">9b </A>
Pamies O.
Bäckvall J.-E.
Trends Biotechnol.
2004,
22:
130
<A NAME="RA54809ST-9C">9c </A>
Martin-Matute B.
Bäckvall J.-E.
Curr. Opin. Chem.
Biol.
2007,
11:
226
<A NAME="RA54809ST-9D">9d </A>
Kamal A.
Azhar MA.
Krishnaji T.
Malik MS.
Azeeza S.
Coord. Chem.
Rev.
2008,
252:
569
<A NAME="RA54809ST-9E">9e </A>
Ahn Y.
Ko S.-B.
Kim M.-J.
Park J.
Coord. Chem. Rev.
2008,
252:
647
<A NAME="RA54809ST-10">10 </A>
Oikawa T.
Mukoyama S.
Soda K.
Biotechnol.
Bioeng.
2001,
73:
80
Related concepts are applied for
the deracemisation of amines/amino acids, see:
<A NAME="RA54809ST-11A">11a </A>
Soda K.
Oikawa T.
Yokoigawa K.
J.
Mol. Catal. B: Enzym.
2001,
11:
149
<A NAME="RA54809ST-11B">11b </A>
Turner NJ.
Curr. Opin. Chem. Biol.
2004,
8:
114
<A NAME="RA54809ST-11C">11c </A>
Turner NJ.
Carr R.
Biocatalytic Routes to Nonracemic Chiral Amines , In Biocatalysis in the Pharmaceutical and Biotechnology
Industry
Patel RN.
CRC;
Boca
Raton / FL:
2007.
p.743
For reviews, see:
<A NAME="RA54809ST-12A">12a </A>
Carnell AJ.
Adv. Biochem. Eng./Biotechnol.
1999,
63:
57
<A NAME="RA54809ST-12B">12b </A>
Azerad R.
Buisson D.
Curr. Opin. Biotechnol.
2000,
11:
565
<A NAME="RA54809ST-12C">12c </A>
See also ref. 3b
<A NAME="RA54809ST-12D">12d </A>
Nakamura K.
Matsuda T.
Harada T.
Chirality
2002,
14:
703
<A NAME="RA54809ST-12E">12e </A>
Gruber CC.
Lavandera I.
Faber K.
Kroutil W.
Adv. Synth.
Catal.
2006,
348:
1789
<A NAME="RA54809ST-13A">13a </A>
Adair GRA.
Williams JMJ.
Chem. Commun. (Cambridge)
2005,
5578
<A NAME="RA54809ST-13B">13b </A>
Shimada Y.
Miyake Y.
Matsuzawa H.
Nishibayashi Y.
Chem. Asian J.
2007,
2:
393
<A NAME="RA54809ST-14">14 </A>
Garrett CE.
Prasad K.
Adv. Synth. Catal.
2004,
346:
889
<A NAME="RA54809ST-15">15 </A>
Wu X.
Xin J.
Zhu L.
Branford-White C.
Sun W.
Xu J.
Xia C.
Lett. Org. Chem.
2008,
5:
672
For recent examples, see:
<A NAME="RA54809ST-16A">16a </A>
Vaijayanthi T.
Chadha A.
Tetrahedron: Asymmetry
2007,
18:
1077
<A NAME="RA54809ST-16B">16b </A>
Utsukihara T.
Misumi O.
Nakajima K.
Koshimura M.
Kuniyoshi M.
Kuroiwa T.
Horiuchi CA.
J.
Mol. Catal. B: Enzym.
2008,
51:
19
<A NAME="RA54809ST-16C">16c </A>
Chen LS.
Mantovani SM.
de
Oliveira LG.
Duarte MCT.
Marzaioli AJ.
J.
Mol. Catal. B: Enzym.
2008,
54:
50
<A NAME="RA54809ST-16D">16d </A>
Titu D.
Chadha A.
J. Mol. Catal. B: Enzym.
2008,
52-53:
168
<A NAME="RA54809ST-16E">16e </A>
Titu D.
Chadha A.
Tetrahedron: Asymmetry
2008,
19:
1698
<A NAME="RA54809ST-16F">16f </A>
Nie Y.
Xu Y.
Hu QS.
Xiao R.
J. Microbiol. Biotechnol.
2009,
19:
65
Employing two different micro-organisms,
one for oxidation and one for reduction, was reported to be less
efficient compared with performing the two steps separately, see:
<A NAME="RA54809ST-17A">17a </A>
Takahashi E.
Nakamichi K.
Furui M.
J.
Ferment. Bioeng.
1995,
80:
247
<A NAME="RA54809ST-17B">17b </A>
Fantin G.
Fogagnolo M.
Giovannini PP.
Medici A.
Pedrini P.
Tetrahedron: Asymmetry
1995,
6:
3047
<A NAME="RA54809ST-18A">18a </A>
Hummel W.
Riebel B.
Ann.
N. Y. Acad. Sci.
1996,
799:
713
<A NAME="RA54809ST-18B">18b </A>
Adam W.
Lazarus M.
Boss B.
Saha-Möller CR.
Humpf HU.
Schreier P.
J. Org. Chem.
1997,
62:
7841
<A NAME="RA54809ST-18C">18c </A>
Adam W.
Lazarus M.
Saha-Möller CR.
Schreier P.
Tetrahedron:
Asymmetry
1998,
9:
351
<A NAME="RA54809ST-18D">18d </A>
Tsuchiya S.
Miyamoto K.
Ohta H.
Biotechnol.
Lett.
1992,
14:
1137
<A NAME="RA54809ST-18E">18e </A>
Shimizu S.
Hatori S.
Hata H.
Yamada H.
Enzyme Microb. Technol.
1987,
9:
411
<A NAME="RA54809ST-19A">19a </A>
Stampfer W.
Kosjek B.
Moitzi C.
Kroutil W.
Faber K.
Angew. Chem. Int. Ed.
2002,
41:
1014
<A NAME="RA54809ST-19B">19b </A>
Stampfer W.
Kosjek B.
Faber K.
Kroutil W.
J. Org. Chem.
2003,
68:
402
<A NAME="RA54809ST-19C">19c </A>
See also ref. 4f
<A NAME="RA54809ST-19D">19d </A>
Edegger K.
Gruber CC.
Poessl TM.
Wallner SR.
Lavandera I.
Faber K.
Niehaus F.
Eck J.
Oehrlein R.
Hafner A.
Kroutil W.
Chem.
Commun. (Cambridge)
2006,
2402
<A NAME="RA54809ST-20">20 </A>
Stampfer W.
Edegger K.
Kosjek B.
Faber K.
Kroutil W.
Adv.
Synth. Catal.
2004,
346:
57
<A NAME="RA54809ST-21">21 </A>
Voss CV.
Gruber CC.
Kroutil W.
Tetrahedron: Asymmetry
2007,
18:
276
<A NAME="RA54809ST-22">22 </A>
Nakamura N.
Matsuda T.
Harada T.
Chirality
2002,
14:
703
For recent reviews, see:
<A NAME="RA54809ST-23A">23a </A>
Müller TJJ.
Metal
Catalyzed Cascade Reactions
Springer;
Heidelberg:
2006.
<A NAME="RA54809ST-23B">23b </A>
Wasilke J.-C.
Obrey SJ.
Baker RT.
Bazan GC.
Chem. Rev.
2005,
105:
1001
<A NAME="RA54809ST-23C">23c </A>
Lee JM.
Na Y.
Han H.
Chang S.
Chem. Soc. Rev.
2004,
33:
302
<A NAME="RA54809ST-23D">23d </A>
Ma J.-A.
Cahard D.
Angew. Chem. Int. Ed.
2004,
43:
4566
<A NAME="RA54809ST-23E">23e </A>
Ajamian A.
Gleason JL.
Angew. Chem. Int.
Ed.
2004,
43:
3754
For selected examples, see:
<A NAME="RA54809ST-24A">24a </A>
Goldman AS.
Roy AH.
Huang Z.
Ahuja R.
Schinski W.
Brookhart M.
Science (Washington,
D. C.)
2006,
312:
257
<A NAME="RA54809ST-24B">24b </A>
Onodera G.
Nishibayashi Y.
Uemura S.
Angew.
Chem. Int. Ed.
2006,
45:
3819
<A NAME="RA54809ST-24C">24c </A>
Trost BM.
Machacek MR.
Faulk BD.
J. Am. Chem. Soc.
2006,
128:
6745
<A NAME="RA54809ST-24D">24d </A>
Shekhar S.
Trantow B.
Leitner A.
Hartwig JF.
J. Am. Chem. Soc.
2006,
128:
11770
<A NAME="RA54809ST-24E">24e </A>
D’Souza DM.
Rominger F.
Müller TJJ.
Angew. Chem. Int. Ed.
2005,
44:
153
<A NAME="RA54809ST-24F">24f </A>
Kressierer CJ.
Müller TJJ.
Angew.
Chem. Int. Ed.
2004,
43:
5997
<A NAME="RA54809ST-25">25 </A>
Tietze LF.
Brasche G.
Gericke K.
Domino Reactions in Organic Synthesis
Wiley-VCH;
Weinheim:
2006.
<A NAME="RA54809ST-26">26 </A>
Geotrichum candidum NBRC
5767, Candida parapsilosis NBRC 0708
(or ATCC 7330), and Sphingomonas paucimobilis NBRC
13934 ( = ATCC 10829, NCIB 8195, NRRL B-54).
<A NAME="RA54809ST-27">27 </A>
Voss CV.
Gruber CC.
Kroutil W.
Angew.
Chem. Int. Ed.
2008,
47:
741
<A NAME="RA54809ST-28">28 </A>
Voss CV.
Gruber CC.
Faber K.
Knaus T.
Macheroux P.
Kroutil W.
J. Am. Chem. Soc.
2008,
130:
13969
<A NAME="RA54809ST-29A">29a </A>
Ebbers EJ.
Ariaans GJA.
Houbiers JPM.
Bruggink A.
Zwanenburg B.
Tetrahedron
1997,
53:
9417
<A NAME="RA54809ST-29B">29b </A>
Kim N.
Ko S.-B.
Kwon MS.
Kim M.-J.
Park J.
Org.
Lett.
2005,
7:
4523
<A NAME="RA54809ST-29C">29c </A>
Riermeier TH.
Gross P.
Monsees A.
Hoff M.
Trauthwein H.
Tetrahedron Lett.
2005,
46:
3404
<A NAME="RA54809ST-29D">29d </A>
Boren L.
Martin-Matute B.
Xu Y.
Cordova A.
Baeckvall J.-E.
Chem.
Eur. J.
2006,
12:
225
<A NAME="RA54809ST-29E">29e </A>
van Nispen SFGM.
van Buijtenen J.
Vekemans
JAJM.
Meuldijk J.
Hulshof LA.
Tetrahedron: Asymmetry
2006,
17:
2299
<A NAME="RA54809ST-29F">29f </A>
Hoyos P.
Fernandez M.
Sinisterra JV.
Alcantara AR.
J. Org. Chem.
2006,
71:
7632
<A NAME="RA54809ST-30A">30a </A>
Huerta FF.
Minidis ABE.
Bäckvall J.-E.
Chem. Soc.
Rev.
2001,
30:
321
<A NAME="RA54809ST-30B">30b </A>
Klomp D.
Danashvili K.
Svennum NC.
Chantapariyavat N.
Wong C.-S.
Vilela F.
Maschmeyer T.
Peters JA.
Hanefeld U.
Org.
Biomol. Chem.
2005,
3:
483
<A NAME="RA54809ST-31">31 </A>
Larsson ALE.
Persson BA.
Bäckvall J.-E.
Angew. Chem. Int. Ed. Engl.
1997,
36:
1211
<A NAME="RA54809ST-32">32 </A>
Allen JV.
Williams JMJ.
Tetrahedron
Lett.
1996,
37:
1859
<A NAME="RA54809ST-33">33 </A>
Berkessel A.
Sebastian-Ibarz ML.
Müller TN.
Angew. Chem. Int. Ed.
2006,
45:
6567
<A NAME="RA54809ST-34">34 </A>
Wuyts S.
De Temmerman K.
De Vos DE.
Jacobs PA.
Chem. Eur. J.
2005,
11:
386
<A NAME="RA54809ST-35">35 </A>
Schnell B.
Faber K.
Kroutil W.
Adv.
Synth. Catal.
2003,
345:
653
<A NAME="RA54809ST-36">36 </A>
Gruber CC.
Nestl BM.
Gross J.
Hildebrandt P.
Bornscheuer UT.
Faber K.
Kroutil W.
Chem. Eur. J.
2007,
13:
8271
<A NAME="RA54809ST-37">37 </A>
Hildebrandt P.
Musidlowska A.
Bornscheuer UT.
Altenbuchner J.
Appl.
Microbiol. Biotechnol.
2002,
59:
483
<A NAME="RA54809ST-38">38 </A>
Lavandera I.
Kern A.
Resch V.
Ferreira-Silva B.
Glieder A.
Fabian WMF.
de Wildeman S.
Kroutil W.
Org. Lett.
2008,
10:
2155