Abstract
A practical three-step route for C-acylation/deacetylation
of acetoacetamides is described. Initial enamination of the acetoacetamides
with Boc-monoprotected ethylenediamine provides β-enamino
amides, which are acylated at the α-carbon with excellent selectivity.
The C-acylated derivatives undergo domino fragmentation in acidic
media to give the corresponding β-keto amides accompanied
by 2-methyl-4,5-dihydro-1H-imidazole.
Key words
β-keto amide - enaminone - C-acylation - domino reaction - 1,3-dicarbonyl
References and Notes
<A NAME="RG06610ST-1A">1a</A>
Zhou C.-Y.
Che C.-M.
J.
Am. Chem. Soc.
2007,
129:
5828
<A NAME="RG06610ST-1B">1b</A>
Kumar K.
Sai S.
Gilbert TM.
Klumpp DA.
J. Org. Chem.
2007,
72:
9761
<A NAME="RG06610ST-1C">1c</A>
Bagley MC.
Chapaneri K.
Dale JW.
Xiong X.
Bower J.
J. Org. Chem.
2005,
70:
1389
<A NAME="RG06610ST-1D">1d</A>
Lieby-Muller F.
Constantieux T.
Rodriguez J.
J.
Am. Chem. Soc.
2005,
127:
17176
<A NAME="RG06610ST-1E">1e</A>
Szczepankiewicz BG.
Heathcock CH.
J.
Org. Chem.
1994,
59:
3512
<A NAME="RG06610ST-1F">1f</A>
Messeri T.
Pentassuglia G.
Di Fabio R.
Tetrahedron
Lett.
2001,
42:
3227
<A NAME="RG06610ST-1G">1g</A>
Cerreti A.
D’Annibale A.
Trogolo C.
Umani F.
Tetrahedron Lett.
2000,
41:
3261
<A NAME="RG06610ST-2A">2a</A>
Moya P.
Castillo M.
Primo-Yufera E.
Couillaud F.
Martinez-Manez R.
Garcera M.-D.
Miranda MA.
Primo J.
Martinez-Pardo R.
J. Org. Chem.
1997,
62:
8544
<A NAME="RG06610ST-2B">2b</A>
Cantin A.
Moya P.
Castillo M.
Primo J.
Miranda MA.
Primo-Yufera E.
Eur. J. Org. Chem.
1999,
221
<A NAME="RG06610ST-2C">2c</A>
Moya P.
Cantin A.
Castillo M.-A.
Primo J.
Miranda MA.
Primo-Yufera E.
J. Org. Chem.
1998,
63:
8530
<A NAME="RG06610ST-2D">2d</A>
Muzaffar A.
Brossi A.
J. Nat. Prod.
1990,
53:
1021
<A NAME="RG06610ST-3">3</A>
Yip K.-T.
Li J.-H.
Lee O.-Y.
Yang D.
Org. Lett.
2005,
7:
5717
<A NAME="RG06610ST-4A">4a</A>
Kuzma PC.
Brown LE.
Harris TM.
J. Org. Chem.
1984,
49:
2015
<A NAME="RG06610ST-4B">4b</A>
Chen Y.
Sieburth SMcN.
Synthesis
2002,
2191
<A NAME="RG06610ST-4C">4c</A>
Gotor V.
Liz R.
Testera AM.
Tetrahedron
2004,
60:
607
<A NAME="RG06610ST-5A">5a</A>
Evans DA.
Ennis MD.
Le T.
J. Am. Chem. Soc.
1984,
106:
1154
<A NAME="RG06610ST-5B">5b</A>
Kashima C.
Fukuchi I.
Takahashi K.
Hosomi A.
Tetrahedron
1996,
52:
10335
<A NAME="RG06610ST-6A">6a</A>
Hendi SB.
Hendi MS.
Wolfe JF.
Synth. Commun.
1987,
17:
13
<A NAME="RG06610ST-6B">6b</A>
Groß AG.
Deppe H.
Schober A.
Tetrahedron Lett.
2003,
44:
3939
<A NAME="RG06610ST-7">7</A>
Neo AG.
Delgado J.
Polo C.
Marcaccini S.
Marcos
CF.
Tetrahedron
Lett.
2005,
46:
23
<A NAME="RG06610ST-8">8</A>
Dekhane M.
Douglas KT.
Gilbert P.
Tetrahedron
Lett.
1996,
37:
1883
<A NAME="RG06610ST-9A">9a</A>
Witzeman JS.
Nottingham WD.
J. Org. Chem.
1991,
56:
1713
<A NAME="RG06610ST-9B">9b</A>
Kibler CJ.
Weissberger A.
Org. Synth., Coll. Vol. III
Wiley;
New
York:
1955.
p.108
<A NAME="RG06610ST-9C">9c</A>
Hoffman RV.
Huizenga DJ.
J.
Org. Chem.
1991,
56:
6435
<A NAME="RG06610ST-9D">9d</A>
Cossy J.
Thellend A.
Synthesis
1989,
753
<A NAME="RG06610ST-10">10</A>
Kim H.-O.
Olsen RK.
Choi O.-S.
J.
Org. Chem.
1987,
52:
4531
<A NAME="RG06610ST-11A">11a</A>
Stefane B.
Polanc S.
Synlett
2004,
698
<A NAME="RG06610ST-11B">11b</A>
Stefane B.
Polanc S.
Tetrahedron
2007,
63:
10902
<A NAME="RG06610ST-12A">12a</A>
Sung K.
Wu S.-Y.
Synth.
Commun.
2001,
31:
3069
<A NAME="RG06610ST-12B">12b</A>
Williams JW.
Krynitsky JA.
Org. Synth., Coll. Vol. III
Wiley;
New
York:
1955.
p.10
<A NAME="RG06610ST-13A">13a</A>
Sato M.
Ogasawara H.
Komatsu S.
Kato T.
Chem. Pharm.
Bull.
1984,
32:
3848
<A NAME="RG06610ST-13B">13b</A>
Clemens RJ.
Hyatt JA.
J.
Org. Chem.
1985,
50:
2431
<A NAME="RG06610ST-13C">13c</A>
Ramana CV.
Mondal MA.
Puranik VG.
Gurjar MK.
Tetrahedron
Lett.
2006,
47:
4061
<A NAME="RG06610ST-14">14</A>
Xu F.
Armstrong JD.
Zhou JX.
Simmons B.
Hughes D.
Ge Z.
Grabowski EJJ.
J. Am. Chem. Soc.
2004,
126:
13002
<A NAME="RG06610ST-15A">15a</A>
Straley JM.
Adams AC.
Org. Synth., Coll.
Vol. IV
Wiley;
New
York:
415.
<A NAME="RG06610ST-15B">15b</A>
Hao W.
Zhang Y.
Ying T.
Lu P.
Synth. Commun.
1996,
26:
2421
<A NAME="RG06610ST-15C">15c</A>
Gukhman
EV.
Reutov VA.
Russ.
J. Gen. Chem.
1999,
69:
1608
<A NAME="RG06610ST-15D">15d</A>
Renault O.
Guillon J.
Dallemagne P.
Rault S.
Tetrahedron Lett.
2000,
41:
681
<A NAME="RG06610ST-15E">15e</A>
Katritzky AR.
Wang Z.
Wang M.
Wilkerson CR.
Hall CD.
Akhmedov NG.
J.
Org. Chem.
2004,
69:
6617
<A NAME="RG06610ST-15F">15f</A>
Zou X.
Jia X.
Wang X.
Xie G.
Synth. Commun.
2007,
37:
1617
<A NAME="RG06610ST-16">16</A>
Venkov AP.
Angelov PA.
Synthesis
2003,
2221
<A NAME="RG06610ST-17">17</A>
Venkov AP.
Angelov PA.
Synth. Commun.
2003,
33:
3025
<A NAME="RG06610ST-18">18</A>
Kofoed T.
Hansen HF.
Ørum H.
Koch T.
J. Peptide Sci.
2001,
7:
402
<A NAME="RG06610ST-19">19</A>
Preparation of β-Enamino
Amides 2: The corresponding acetoacetamide 1 (5
mmol) was added to a solution of Boc-monoprotected ethylenediamine
(5 mmol) in CH2Cl2 (20 mL) or MeOH (20 mL)
for acetoacetamide 1h (1,
R¹ = H) and the reaction mixture was
stirred over anhyd Na2SO4 for 24 h at r.t.
After that, the sulfate was filtered off and the solvent was removed
by distillation. The residue was triturated with small amount of
Et2O to give practically clean β-enamino amide
in nearly quantitative yield (93-98%). Compound 2a (2, R¹ = Ph)
has moderate solubility in CH2Cl2 and crystallizes
out of the reaction mixture, so special care must be taken to wash
it thoroughly off the drying agent. The β-enamino amides 2 are air-stable and can be stored safely
at r.t., but they easily decompose on silica gel.
<A NAME="RG06610ST-20">20</A>
Preparation of α-Acyl-β-enamino
Amides 3; General Procedure: The corresponding acid chloride
(1 mmol) was slowly added to a magnetically stirred solution of
enamino amide 2 (1 mmol), DMAP (0.2 mmol,
25 mg) and Et3N (1 mmol, 0.14 mL) in CH2Cl2 (20
mL). The reaction mixture was stirred for 1 h at r.t. and after
that was transferred to a separating funnel with additional 20 mL
of CH2Cl2, where it was washed with 5% aq
solution of AcOH (15 mL) and then with sat. aq NaHCO3 (15
mL). The organic phase was dried over Na2SO4 and
the solvent was distilled off. The residue crystallized upon trituration
with Et2O or Et2O-PE (1:1) to give
the corresponding product 3 in 50-90% yield. Additional
10-30% were isolated from the ethereal washings
after column chromatography on silica gel with Et2O as
the eluent [increasing polarity to Et2O-MeOH
(10:1) for products 3 with R¹ = H].
<A NAME="RG06610ST-21">21</A>
Preparation of β-Keto
Amides 6; General Procedure: The corresponding intermediate 3 (200 mg) was dissolved in TFA (2 mL),
the solution was stirred for 40 min at r.t. and the reaction was
quenched with aq solution of MeCOONa (3 mol/L, 20 mL).
The resulting mixture was stirred for 20 min at r.t. and then extracted
with CH2Cl2 [3 × 20 mL (5 × 20
mL for 6h and 10 × 20 mL for 6c and 6i)].
In the case of 6i the aqueous phase was
saturated with NaCl prior to extraction. The combined organic layers
were washed with sat. aq NaHCO3 (15 mL) and dried over
Na2SO4. The solvent was distilled off to afford
practically clean β-keto amides. In some cases enol tautomer
was registered immediately after isolation, but it gradually converted
to the keto form.
<A NAME="RG06610ST-22">22</A>
All reactions were carried out in
untreated CH2Cl2 and open to air.