Semin Thromb Hemost 2009; 35(2): 189-203
DOI: 10.1055/s-0029-1220327
© Thieme Medical Publishers

MYH9-Related Platelet Disorders

Karina Althaus1 , Andreas Greinacher1
  • 1Institut für Immunologie und Transfusionsmedizin, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
Further Information

Publication History

Publication Date:
30 April 2009 (online)

ABSTRACT

Myosin heavy chain 9 (MYH9)-related platelet disorders belong to the group of inherited thrombocytopenias. The MYH9 gene encodes the nonmuscle myosin heavy chain IIA (NMMHC-IIA), a cytoskeletal contractile protein. Several mutations in the MYH9 gene lead to premature release of platelets from the bone marrow, macrothrombocytopenia, and cytoplasmic inclusion bodies within leukocytes. Four overlapping syndromes, known as May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome, and Sebastian platelet syndrome, describe different clinical manifestations of MYH9 gene mutations. Macrothrombocytopenia is present in all affected individuals, whereas only some develop additional clinical manifestations such as renal failure, hearing loss, and presenile cataracts. The bleeding tendency is usually moderate, with menorrhagia and easy bruising being most frequent. The biggest risk for the individual is inappropriate treatment due to misdiagnosis of chronic autoimmune thrombocytopenia. To date, 31 mutations of the MYH9 gene leading to macrothrombocytopenia have been identified, of which the upstream mutations up to amino acid ~1400 are more likely associated with syndromic manifestations than the downstream mutations. This review provides a short history of MYH9-related disorders, summarizes the clinical and laboratory characteristics, describes a diagnostic algorithm, presents recent results of animal models, and discusses aspects of therapeutic management.

REFERENCES

  • 1 Balduini C L, Cattaneo M, Fabris F Italian Gruppo di Studio delle Piastrine et al. Inherited thrombocytopenias: a proposed diagnostic algorithm from the Italian Gruppo di Studio delle Piastrine.  Haematologica. 2003;  88 582-592
  • 2 Toren A, Rozenfeld-Granot G, Rocca B et al.. Autosomal-dominant giant platelet syndromes: a hint of the same genetic defect as in Fechtner syndrome owing to a similar genetic linkage to chromosome 22q11-13.  Blood. 2000;  96 3447-3451
  • 3 Martignetti J A, Heath K E, Harris J et al.. The gene for May-Hegglin anomaly localizes to a <1-Mb region on chromosome 22q12.3-13.1  Am J Hum Genet. 2000;  66 1449-1454
  • 4 Seri M, Cusano R, Gangarossa S The May-Heggllin/Fechtner Syndrome Consortium et al. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes.  Nat Genet. 2000;  26 103-105
  • 5 Kelley M J, Jawien W, Lin A et al.. Autosomal dominant macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly) is linked to chromosome 22q12-13.  Hum Genet. 2000;  106 557-564
  • 6 Kunishima S, Kojima T, Matsushita T et al.. Mutations in the NMMHC-A gene cause autosomal dominant macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly/Sebastian syndrome).  Blood. 2001;  97 1147-1149
  • 7 Heath K E, Campos-Barros A, Toren A et al.. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes.  Am J Hum Genet. 2001;  69 1033-1045
  • 8 Noris P, Pecci A, Di Bari F et al.. Application of a diagnostic algorithm for inherited thrombocytopenias to 46 consecutive patients.  Haematologica. 2004;  89 1219-1225
  • 9 May R. Leukozyteneinschlüsse.  Dtsch Arch Klin Med. 1909;  96 1-6
  • 10 Hegglin R. Gleichzeitige konstitutionelle Veränderungen an Neutrophilen und Thrombozyten.  Helv Med Acta. 1945;  12 439-440
  • 11 Scholer V H, Schnös M. Observations on another carrier of the May-Hegglin anomaly of leukocytes and blood platelets.  Schweiz Med Wochenschr. 1960;  29 1269-1273
  • 12 Epstein C J, Sahud M A, Piel C F et al.. Hereditary macrothrombocytopathia, nephritis and deafness.  Am J Med. 1972;  52 299-310
  • 13 Peterson L C, Rao K V, Crosson J T, White J G. Fechtner syndrome—a variant of Alport's syndrome with leukocyte inclusions and macrothrombocytopenia.  Blood. 1985;  65 397-406
  • 14 Greinacher A, Nieuwenhuis H K, White J G. Sebastian platelet syndrome: a new variant of hereditary macrothrombocytopenia with leukocyte inclusions.  Blut. 1990;  61 282-288
  • 15 Kunishima S, Kojima T, Tanaka T et al.. Mapping of a gene for May-Hegglin anomaly to chromosome 22q.  Hum Genet. 1999;  105 379-383
  • 16 Kelley M J, Jawien W, Ortel T L, Korczak J F. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly.  Nat Genet. 2000;  26 106-108
  • 17 Balduini C L, Iolascon A, Savoia A. Inherited thrombocytopenias: from genes to therapy.  Haematologica. 2002;  87 860-880
  • 18 Geddis A E, Kaushansky K. Inherited thrombocytopenias: toward a molecular understanding of disorders of platelet production.  Curr Opin Pediatr. 2004;  16 15-22
  • 19 Leung T F, Tsoi W C, Li C K, Chik K W, Shing M M, Yuen P M. A Chinese adolescent girl with Fechtner-like syndrome.  Acta Paediatr. 1998;  87 705-707
  • 20 Seri M, Pecci A, Di Bari F et al.. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness.  Medicine (Baltimore). 2003;  82 203-215
  • 21 Kunishima S, Hamaguchi M, Saito H. Differential expression of wild-type and mutant NMMHC-IIA polypeptides in blood cells suggests cell-specific regulation mechanisms in MYH9 disorders.  Blood. 2008;  111 3015-3023
  • 22 Kunishima S, Matsushita T, Kojima T et al.. Immunofluorescence analysis of neutrophil nonmuscle myosin heavy chain-A in MYH9 disorders: association of subcellular localization with MYH9 mutations.  Lab Invest. 2003;  83 115-122
  • 23 Pecci A, Panza E, Pujol-Moix N et al.. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease.  Hum Mutat. 2008;  29 409-417
  • 24 Kunishima S, Matsushita T, Kojima T et al.. Identification of six novel MYH9 mutations and genotype-phenotype relationships in autosomal dominant macrothrombocytopenia with leukocyte inclusions.  J Hum Genet. 2001;  46 722-729
  • 25 Kunishima S, Matsushita T, Hamaguchi M, Saito H. Identification and characterization of the first large deletion of the MYH9 gene associated with MYH9 disorders.  Eur J Haematol. 2008;  80 540-544
  • 26 Arrondel C, Vodovar N, Knebelmann B et al.. Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes.  J Am Soc Nephrol. 2002;  13 65-74
  • 27 Ma E S, Wong C L, Shek T W, Hui S P. Hematologic and genetic characterization of an MYH9-related disorder in a Chinese family.  Haematologica. 2006;  91 1002-1003
  • 28 Dong F, Li S, Pujol-Moix N et al.. Genotype-phenotype correlation in MYH9-related thrombocytopenia.  Br J Haematol. 2005;  130 620-627
  • 29 Lalwani A K, Goldstein J A, Kelley M J, Luxford W, Castelein C M, Mhatre A N. Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9.  Am J Hum Genet. 2000;  67 1121-1128
  • 30 Otsubo K, Kanegane H, Nomura K, Ogawa J, Miyawaki T, Kunishima S. Identification of a novel MYH9 mutation in a patient with May-Hegglin anomaly.  Pediatr Blood Cancer. 2006;  47 968-969
  • 31 Canobbio I, Noris P, Pecci A, Balduini A, Balduini C L, Torti M. Altered cytoskeleton organization in platelets from patients with MYH9-related disease.  J Thromb Haemost. 2005;  3 1026-1035
  • 32 Paul B Z, Daniel J L, Kunapuli S P. Platelet shape change is mediated by both calcium-dependent and -independent signaling pathways. Role of p160 Rho-associated coiled-coil-containing protein kinase in platelet shape change.  J Biol Chem. 1999;  274 28293-28300
  • 33 Léon C, Eckly A, Hechler B et al.. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion.  Blood. 2007;  110 3183-3191
  • 34 Valeri C R, Khuri S, Ragno G. Nonsurgical bleeding diathesis in anemic thrombocytopenic patients: role of temperature, red blood cells, platelets, and plasma-clotting proteins.  Transfusion. 2007;  47(4, Suppl) 206S-248S
  • 35 Kiefel V, Freitag E, Kroll H, Santoso S, Mueller-Eckhardt C. Platelet autoantibodies (IgG, IgM, IgA) against glycoproteins IIb/IIIa and Ib/IX in patients with thrombocytopenia.  Ann Hematol. 1996;  72 280-285
  • 36 Matzdorff A C, White J G, Malzahn K, Greinacher A. Perioperative management of a patient with Fechtner syndrome.  Ann Hematol. 2001;  80 436-439
  • 37 Bernard J, Soulier J P. Sur une nouvelle variété de dystrophie thrombocytaire-hemorragipare congénitale [in French].  Semin Hop. 1948;  24(Spec. No.) 3217-3223
  • 38 Pham A, Wang J. Bernard-Soulier syndrome: an inherited platelet disorder.  Arch Pathol Lab Med. 2007;  131 1834-1836
  • 39 De Marco L, Mazzucato M, Fabris F et al.. Variant Bernard-Soulier syndrome type bolzano. A congenital bleeding disorder due to a structural and functional abnormality of the platelet glycoprotein Ib-IX complex.  J Clin Invest. 1990;  86 25-31
  • 40 Breton-Gorius J, Favier R, Guichard J et al.. A new congenital dysmegakaryopoietic thrombocytopenia (Paris-Trousseau) associated with giant platelet alpha-granules and chromosome 11 deletion at 11q23.  Blood. 1995;  85 1805-1814
  • 41 Krishnamurti L, Neglia J P, Nagarajan R et al.. Paris-Trousseau syndrome platelets in a child with Jacobsen's syndrome.  Am J Hematol. 2001;  66 295-299
  • 42 Freson K, Devriendt K, Matthijs G et al.. Platelet characteristics in patients with X-linked macrothrombocytopenia because of novel GATA1 mutation.  Blood. 2001;  98 85-92
  • 43 Nichols K E, Crispino J D, Poncz M et al.. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1.  Nat Genet. 2000;  24 266-270
  • 44 Köhler M, Hellstern P, Morgenstern E et al.. Gray platelet syndrome: selective alpha-granule deficiency and thrombocytopenia due to increased platelet turnover.  Blut. 1985;  50 331-340
  • 45 Nurden A T, Nurden P, Bermejo E, Combrié R, McVicar D W, Washington A V. Phenotypic heterogeneity in the gray platelet syndrome extends to the expression of TREM family member, TLT-1.  Thromb Haemost. 2008;  100 45-51
  • 46 Hodge T, Cope M J. A myosin family tree.  J Cell Sci. 2000;  113(Pt 19) 3353-3354
  • 47 Maupin P, Phillips C L, Adelstein R S, Pollard T D. Differential localization of myosin-II isozymes in human cultured cells and blood cells.  J Cell Sci. 1994;  107(Pt 11) 3077-3090
  • 48 Simons M, Wang M, McBride O W et al.. Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes.  Circ Res. 1991;  69 530-539
  • 49 Marigo V, Nigro A, Pecci A et al.. Correlation between the clinical phenotype of MYH9-related disease and tissue distribution of class II nonmuscle myosin heavy chains.  Genomics. 2004;  83 1125-1133
  • 50 Toothaker L E, Gonzalez D A, Tung N et al.. Cellular myosin heavy chain in human leukocytes: isolation of 5′ cDNA clones, characterization of the protein, chromosomal localization, and upregulation during myeloid differentiation.  Blood. 1991;  78 1826-1833
  • 51 Kumar C C, Mohan S R, Zavodny P J, Narula S K, Leibowitz P J. Characterization and differential expression of human vascular smooth muscle myosin light chain 2 isoform in nonmuscle cells.  Biochemistry. 1989;  28 4027-4035
  • 52 Fox J EB, Phillips D R. Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets.  J Biol Chem. 1982;  257 4120-4126
  • 53 Suzuki Y, Yamamoto M, Wada H et al.. Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase.  Blood. 1999;  93 3408-3417
  • 54 Paul B Z, Daniel J L, Kunapuli S P. Platelet shape change is mediated by both calcium-dependent and -independent pathways. Role of p160 Rho-associated coiled-coil-containing protein kinase in platelet shape change.  J Biol Chem. 1999;  274 28293-28300
  • 55 Berg J S, Powell B C, Cheney R E. A millennial myosin census.  Mol Biol Cell. 2001;  12 780-794
  • 56 Chiquet B T, Hashmi S S, Henry R et al.. Genomic screening identifies novel linkages and provides evidence for a role of MYH9 in nonsyndromic cleft lip and palate.  Eur J Hum Genet. 2009;  17 195-204
  • 57 Pecci A, Canobbio I, Balduini A et al.. Pathogenetic mechanisms of hematological abnormalities of patients with MYH9 mutations.  Hum Mol Genet. 2005;  14 3169-3178
  • 58 Deutsch S, Rideau A, Bochaton-Piallat M L et al.. Asp1424Asn MYH9 mutation results in an unstable protein responsible for the phenotypes in May-Hegglin anomaly/Fechtner syndrome.  Blood. 2003;  102 529-534
  • 59 Franke J D, Dong F, Rickoll W L et al.. Rod mutations associated with MYH9-related disorders disrupt nonmuscle myosin-IIA assembly.  Blood. 2005;  105 161-169
  • 60 Toren A, Rozenfeld-Granot G, Heath K E et al.. MYH9 spectrum of autosomal-dominant giant platelet syndromes: unexpected association with fibulin-1 variant-D inactivation.  Am J Hematol. 2003;  74 254-262
  • 61 Matsushita T, Hayashi H, Kunishima S et al.. Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice.  Biochem Biophys Res Commun. 2004;  325 1163-1171
  • 62 D'Apolito M, Guarnieri V, Boncristiano M, Zelante L, Savoia A. Cloning of the murine non-muscle myosin heavy chain IIA gene ortholog of human MYH9 responsible for May-Hegglin, Sebastian, Fechtner, and Epstein syndromes.  Gene. 2002;  286 215-222
  • 63 Conti M A, Even-Ram S, Liu C, Yamada K M, Adelstein R S. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice.  J Biol Chem. 2004;  279 41263-41266
  • 64 Mhatre A N, Li Y, Bhatia N et al.. Generation and characterization of mice with MYH9 deficiency.  Neuromolecular Med. 2007;  9 205-215
  • 65 Parker L L, Gao J, Zuo J. Absence of hearing loss in a mouse model for DFNA17 and MYH9-related disease: the use of public gene-targeted ES cell resources.  Brain Res. 2006;  1091 235-242
  • 66 Chen Z, Naveiras O, Balduini A et al.. The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway.  Blood. 2007;  110 171-179
  • 67 Murakami N, Singh S S, Chauhan V P et al.. Phospholipid binding, phosphorylation by protein kinase C and filament assembly of the COOH terminal heavy chain fragments of nonmuscle myosin II isoforms MIIA and MIIB.  Biochemistry. 1995;  34 16046-16055
  • 68 Murakami N, Elzinga M, Singh S S, Chauhan V P. Direct binding of myosin II to phospholipid vesicles via tail regions and phosphorylation of the heavy chains by protein kinase C.  J Biol Chem. 1994;  269 16082-16090
  • 69 Kunishima S, Yoshinari M, Nishio H et al.. Haematological characteristics of MYH9 disorders due to MYH9 R702 mutations.  Eur J Haematol. 2007;  78 220-226
  • 70 Hu A, Wang F, Sellers J R. Mutations in human nonmuscle myosin IIA found in patients with May-Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function.  J Biol Chem. 2002;  277 46512-46517
  • 71 Li Y, Friedmann D R, Mhatre A N, Lalwani A K. MYH9-siRNA and MYH9 mutant alleles: expression in cultured cell lines and their effects upon cell structure and function.  Cell Motil Cytoskeleton. 2008;  65 393-405
  • 72 Hildebrand M S, de Silva M G, Gardner R J et al.. Cochlear implants for DFNA17 deafness.  Laryngoscope. 2006;  116 2211-2215
  • 73 Lalwani A K, Goldstein J A, Kelley M J et al.. Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9.  Am J Hum Genet. 2000;  67 1121-1128
  • 74 Cai Y, Biais N, Giannone G et al.. Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow.  Biophys J. 2006;  91 3907-3920
  • 75 Eugster M, Reinhart W H. The influence of the haematocrit on primary haemostasis in vitro.  Thromb Haemost. 2005;  94 1213-1218
  • 76 Nakao N, Yoshimura A, Morita H, Takada M, Kayano T, Ideura T. Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non-diabetic renal disease (COOPERATE): a randomised controlled trial.  Lancet. 2003;  361 117-124
  • 77 Pecci A, Granata A, Fiore C E, Balduini C L. Renin-angiotensin system blockade is effective in reducing proteinuria of patients with progressive nephropathy caused by MYH9 mutations (Fechtner-Epstein syndrome).  Nephrol Dial Transplant. 2008;  23 2690-2692
  • 78 Sehbai A S, Abraham J, Brown V K. Perioperative management of a patient with May-Hegglin anomaly requiring craniotomy.  Am J Hematol. 2005;  79 303-308
  • 79 McBane R D, Elliott M A, White J G et al.. Fechtner syndrome: physiologic analysis of macrothrombocytopenia.  Blood Coagul Fibrinolysis. 2000;  11 243-247
  • 80 Heller P G, Pecci A, Glembotsky A C et al.. Unexplained recurrent venous thrombosis in a patient with MYH9-related disease.  Platelets. 2006;  17 274-275
  • 81 Selleng K, Lubenow L E, Greinacher A, Warkentin T E. Perioperative management of MYH9 hereditary macrothrombocytopenia (Fechtner syndrome).  Eur J Haematol. 2007;  79 263-268

Prof. Dr. Andreas Greinacher

Institut für Immunologie und Transfusionsmedizin, Ernst-Moritz-Arndt Universität Greifswald

Sauerbruchstraße, D 17475 Greifswald, Germany

Email: greinach@uni-greifswald.de

    >