Int J Sports Med 2009; 30(9): 647-651
DOI: 10.1055/s-0029-1220732
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Saccades and Prefrontal Hemodynamics in Basketball Players

K. Fujiwara 1 , N. Kiyota 1 , M. Maekawa 1 , K. Kunita 2 , T. Kiyota 3 , K. Maeda 4
  • 1Department of Human Movement and Health, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
  • 2Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
  • 3Department of Psychology, School of Humanities, Sapporo International University, Sapporo, Japan
  • 4Department of Physical Therapy, Faculty of Health Science, Morinomiya University of Health Sciences, Osaka, Japan
Further Information

Publication History

accepted after revision February 26, 2009

Publication Date:
30 June 2009 (online)

Abstract

We investigated saccade performance and prefrontal hemodynamics in basketball players with different skill levels. Subjects were 27 undergraduate basketball players and 13 non-athlete undergraduates (control group: CON). The players were divided into two groups: those who had played in the National Athletic Meet during high school or played regularly (n=13, elite group: ELI) and those who were bench warmers (n=14, skilled group: SKI). Horizontal eye movement and oxy-, deoxy-, and total-hemoglobin (Hb) concentration in the prefrontal cortex during pro- and anti-saccade were measured using electro-oculography and near-infrared spectroscopy, respectively. Only error rate in anti-saccade was less in ELI (4.8±4.0%) than SKI (13.7±12.6%) and CON (13.9±8.3%) (p<0.05). In ELI alone, oxy- (−0.15±0.18 mmol*mm) and total-Hb (−0.12±0.15 mmol*mm) during anti-saccade decreased significantly compared with that during rest (p<0.05), while those in CON significantly increased (oxy-Hb: 0.17±0.15 mmol*mm, total-Hb: 0.14±0.14 mmol*mm) (p<0.05). These results suggest that inhibition of eye movement to a visual target changes from voluntary to automatic through the motor learning of basketball.

References

  • 1 Brown MR, Goltz HC, Vilis T, Ford KA, Everling S. Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials.  Neuroimage. 2006;  33 644-659
  • 2 Clementz BA, McDowell JE, Stewart SE. Timing and magnitude of frontal activity differentiates refixation and anti-saccade performance.  Neuroreport. 2001;  12 1863-1868
  • 3 Deiber MP, Wise SP, Honda M, Catalan MJ, Grafman J, Hallett M. Frontal and parietal networks for conditional motor learning: a positron emission tomography study.  J Neurophysiol. 1997;  78 977-991
  • 4 Di Russo F, Pitzalis S, Spinelli D. Fixation stability and saccadic latency in élite shooters.  Vision Res. 2003;  43 1837-1845
  • 5 Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance.  Psychol Rev. 1993;  100 363-406
  • 6 Evdokimidis I, Smyrnis N, Constantinidis TS, Stefanis NC, Avramopoulos D, Paximadis C, Theleritis C, Efstratiadis C, Kastrinakis G, Stefanis CN. The antisaccade task in a sample of 2,006 young men. I. Normal population characteristics.  Exp Brain Res. 2002;  147 45-52
  • 7 Everling S, Fischer B. The antisaccade: a review of basic research and clinical studies.  Neuropsychologia. 1998;  36 885-899
  • 8 Ford KA, Goltz HC, Brown MR, Everling S. Neural processes associated with antisaccade task performance investigated with event-related FMRI.  J Neurophysiol. 2005;  94 429-440
  • 9 Fujiwara K, Kunita K, Toyama H. Changes in saccadic reaction time while maintaining neck flexion in men and women.  Eur J Appl Physiol. 2000;  81 317-324
  • 10 Fujiwara K, Kunita K, Watanabe H. Sports exercise effect on shortening of saccadic reaction time associated with neck extensor muscle activity.  Int J Sports Med. 2006;  27 792-797
  • 11 Gais S, Köster S, Sprenger A, Bethke J, Heide W, Kimmig H. Sleep is required for improving reaction times after training on a procedural visuo-motor task.  Neurobiol Learn Mem. 2008;  90 610-615
  • 12 Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain.  Nat Rev Neurosci. 2001;  2 685-694
  • 13 Hermann MJ, Plichta MM, Ehlis AC, Fallgatter AJ. Optical topography during a Go-NoGo task assessed with multi-channel near-infrared spectroscopy.  Behav Brain Res. 2005;  160 135-140
  • 14 Homan RW, Herman J, Purdy P. Cerebral location of international 10–20 system electrode placement.  Electroencephalogr Clin Neurophysiol. 1987;  66 376-382
  • 15 Hoshi Y. Functional near-infrared optical imaging: utility and limitations in human brain mapping.  Psychophysiology. 2003;  40 511-520
  • 16 Jasper HH. The ten twenty electrode system of the international federation.  Electroencephalogr Clin Neurophysiol. 1958;  10 371-375
  • 17 Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE. Anatomy of motor learning. I. Frontal cortex and attention to action.  J Neurophysiol. 1997;  77 1313-1324
  • 18 Kalesnykas RP, Hallett PE. Retinal eccentricity and the latency of eye saccades.  Vision Res. 1993;  34 517-531
  • 19 Kassubek J, Shmidtke K, Kimming H, Lucking CH, Greenlee MW. Changes in cortical activation during mirror reading before and after training: an fMRI study of procedural learning.  Brain Res Cogn Brain Res. 2001;  10 207-217
  • 20 Krause J. Coaching basketball: the complete coaching guide of the National Association of Basketball Coaches. Indianapolis: Masters Press 1994
  • 21 Land MF, McLeod P. From eye movements to actions: how batsmen hit the ball.  Nat Neurosci. 2000;  3 1340-1345
  • 22 Leff DR, Elwell CE, Orihuela-Espina F, Atallah L, Delpy DT, Darzi AW, Yang GZ. Changes in prefrontal cortical behaviour depend upon familiarity on a bimanual co-ordination task: an fNIRS study.  Neuroimage. 2008;  39 805-813
  • 23 Leigh RJ, Kennard C. Using saccades as a research tool in the clinical neurosciences.  Brain. 2004;  127 460-477
  • 24 Lenoir M, Crevits L, Goethals M, Wildenbeest J, Musch E. Are better eye movements an advantage in ball games? A study of prosaccadic and antisaccadic eye movements.  Percept Mot Skills. 2000;  91 546-552
  • 25 Mihara M, Miyai I, Hatakenaka M, Kubota K, Sakoda S. Sustained prefrontal activation during ataxic gait: a compensatory mechanism for ataxic stroke?.  Neuroimage. 2007;  37 1338-1345
  • 26 Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study.  Neuroimage. 2001;  14 1186-1192
  • 27 Morrillo M, Di Russo F, Pitzalis S, Spinelli D. Latency of prosaccades and antisaccades in professional shooters.  Med Sci Sports Exerc. 2006;  38 388-394
  • 28 Pierrot-Deseilligny C, Müri RM, Ploner CJ, Gaymard B, Demeret S, Rivaud-Pechoux S. Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour.  Brain. 2003;  126 1460-1473
  • 29 Ploner CJ, Gaymard BM, Rivaud-Péchoux S, Pierrot-Deseilligny C. The prefrontal substrate of reflexive saccade inhibition in humans.  Biol Psychiatry. 2005;  57 1159-1165
  • 30 Sakai K, Hikosaka O, Miyauchi S, Takino R, Sasaki Y, Putz B. Transition of brain activation from frontal to parietal areas in visuomotor sequence learning.  J Neurosci. 1998;  18 1827-1840
  • 31 Shibukawa K. Undo rikigaku (Motion dynamics) [in Japanese]. Tokyo: Taishukan publishing 1969
  • 32 Stine CD, Arterburn MR, Stern NS. Vision and sports: a review of the literature.  J Am Optom Assoc. 1982;  53 627-633
  • 33 Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation.  Neuroimage. 2002;  17 719-731
  • 34 Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, Kubota K. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study.  Neuroimage. 2004;  23 1020-1026
  • 35 Wade AR. The negative BOLD signal unmasked.  Neuron. 2002;  36 993-995
  • 36 Wolf M, Wolf U, Toronov V, Michalos A, Choi JH, Gratton E. Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study.  Neuroimage. 2002;  16 704-712

Correspondence

Dr. K. Fujiwara

Department of Human Movement and Health

Graduate School of Medical Science

Kanazawa University

13-1 Takara-machi

920-8640 Kanazawa

Japan

Phone: +81/76/265 22 25

Fax: +81/76/234 42 19

Email: fujikatu@med.m.kanazawa-u.ac.jp

    >