Horm Metab Res 2009; 41(6): 500-509
DOI: 10.1055/s-0029-1220744
Review

© Georg Thieme Verlag KG Stuttgart · New York

Gene Therapy in Thyroid Cancer

C. Spitzweg 1
  • 1Department of Internal Medicine II, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
Further Information

Publication History

received 17.02.2009

accepted 09.04.2009

Publication Date:
11 May 2009 (online)

Abstract

A variety of promising gene therapy approaches have been examined for treatment of follicular cell-derived and medullary thyroid cancer, including corrective gene therapy, cytoreductive gene therapy as well as immunomodulatory gene therapy. In addition, cloning of the NIS gene has provided us with a powerful cytoreductive gene therapy strategy based on targeted NIS gene transfer followed by radionculide (131I, 188Re, 211At) therapy. The data summarized in this article clearly demonstrate the high potential of currently available gene therapy approaches for future therapy of advanced dedifferentiated and medullary thyroid cancer, in particular as part of a multimodality approach. One of the major hurdles on the way to clinical application of gene therapy approaches in metastasized thyroid cancer is optimal tumor-specific targeting in the presence of low toxicity. Replication-selective viral vectors and novel biodegradable polymers as highly efficient nonviral vectors seem to be most promising candidates for the development of efficient and safe systemic gene therapy strategies. The bystander effect that is associated with some of the above listed gene therapy strategies provides a powerful means to compensate for the limited tumor spread of viral and nonviral vectors. Based on its dual function as therapy and reporter gene allowing noninvasive imaging by 123I-scintigraphy and 124I-PET imaging, NIS gene therapy offers the advantage of detailed characterization of in vivo vector biodistribution as well as localization, level, and duration of transgene expression – an essential prerequisite for exact planning and monitoring of clinical gene therapy trials with the aim of individualized therapy.

References

  • 1 Sherman SI. Thyroid carcinoma.  Lancet. 2003;  361 501-511
  • 2 Spitzweg C, Harrington KJ, Pinke LA, Vile RG, Morris JC. The sodium iodide symporter and its potential in cancer therapy.  J Clin Endocrinol Metab. 2001;  86 3327-3335
  • 3 Barzon L, Pacenti M, Boscaro M, Palu G. Gene therapy for thyroid cancer.  Expert Opin Biol Ther. 2004;  4 1225-1239
  • 4 Spitzweg C, Morris JC. Gene therapy for thyroid cancer: current strategies and future prospects.  Thyroid. 2004;  14 424-434
  • 5 DeGroot LJ, Zhang R. Viral mediated gene therapy for the management of metastatic thyroid carcinoma.  Curr Drug Targets Immune Endocr Metab Disord. 2004;  4 235-243
  • 6 Nagayama Y, Shigematsu K, Namba H, Zeki K, Yamashita S, Niwa M. Inhibition of angiogenesis and tumorigenesis, and induction of dormancy by p53 in a p53-null thyroid carcinoma cell line in vivo.  Anticancer Res. 2000;  20 2723-2728
  • 7 Kim S-B, Ahn I-M, Park H-J, Park J-S, Cho H-J, Gong G, Suh C, Lee J-S, Kim W-K, Kim SHB. Growth inhibition and chemosensitivity of poorly differentiated human thyroid cancer cell line (NPA) transfected with p53 gene.  Head Neck. 2001;  23 223-229
  • 8 Nagayama Y, Yokoi H, Takeda K, Hasegawa M, Nishihara E, Namba H, Yamashita S, Niwa M. Adenovirus-mediated tumor suppressor p53 gene therapy for anaplastic thyroid carcinoma in vitro and in vivo.  J Clin Endocrinol Metab. 2000;  85 4081-4086
  • 9 Narimatsu M, Nagayama Y, Akino K, Yasuda M, Yamamoto T, Yang TT, Ohtsuru A, Namba H, Yamashita S, Ayabe H, Niwa M. Therapeutic usefullness of wild-type p53 gene introduction in a p53-null anaplastic thyroid carcinoma cell line.  J Clin Endocrinol Metab. 1998;  83 3668-3672
  • 10 Imanishi R, Ohtsuru A, Iwamatsu M, Iioka T, Namba H, Seto S, Yano K, Yamashita S. A histone deacetylase inhibitor enhances killing of undifferentiated thyroid carcinoma cells by p53 gene therapy.  J Clin Endocrinol Metab. 2002;  87 4821-4824
  • 11 Moretti F, Nanni S, Farsetti A, Narducci M, Crescenzi M, Giuliacci S, Sacchi A, Pontecorvi A. Effects of exogenous p53 transduction in thyroid tumor cells with different p53 status.  J Clin Endocrinol Metab. 2000;  85 302-308
  • 12 Barzon L, Gnatta E, Castagliuolo I, Trevisan M, Moretti F, Pontecorvi A, Boscaro M, Palu G. Modulation of retrovirally driven therapeutic genes by mutant TP53 in anaplastic thyroid carcinoma.  Cancer Gene Ther. 2005;  12 381-388
  • 13 Hassan I, Wunderlich A, Burchert A, Hoffmann S, Zielke A. Antisense p53 oligonucleotides inhibit proliferation and induce chemosensitivity in follicular thyroid cancer cells.  Anticancer Res. 2006;  26 1171-1176
  • 14 McIver B, Grebe SKG, Eberhardt NL. The PAX8/PPARg fusion oncogene as a potential therapeutic target in folicular thyroid carcinoma.  Curr Drug Targets Immune Endocr Metab Disord. 2004;  4 221-234
  • 15 Martelli ML, Iuliano R, Pera I, Sama I, Monaco C, Cammarota S, Kroll T, Chiariotti L, Santoro M, Fusco A. Inhibitory effects of peroxisome proliferator-activated receptor g on thyroid carcinoma cell growth.  J Clin Endocrinol Metab. 2002;  87 4728-4735
  • 16 Cerutti JM, Delcelo R, Amadei MJ, Nakabashi C, Maciel RM, Peterson B, Shoemaker J, Riggins GJ. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression.  J Clin Invest. 2004;  113 1234-1242
  • 17 Latini FRM, Hemerly JP, Oler G, Riggins GJ, Cerutti JM. Re-expression of ABI3-binding protein suppresses thyroid tumor growth by promoting senescence and inhibiting invasion.  Endocr Relat Cancer. 2008;  15 787-799
  • 18 Drosten M, Frilling A, Stiewe T, Pützer BM. A new therapeutic approach in medullary thyroid cancer treatment: Inhibition of oncogenic RET signaling by adenoviral vector-mediated expression of a dominant-negative RET mutant.  Surgery. 2002;  132 991-997
  • 19 Drosten M, Pützer BM. Gene therapeutic approaches for medullary thyroid carcinoma treatment.  J Mol Med. 2003;  81 411-419
  • 20 Du Z-X, Zhang H-Y, Gao D-X, Wang H-Q, Li Y-J, Liu G-L. Antisurvivin oligonucleotides inhibit growth and induce apoptosis in human medullary thyroid carcinoma cells.  Exp Mol Med. 2006;  38 230-240
  • 21 Nishihara E, Nagayama Y, Mawatari F, Tanaka K, Namba H, Niwa M, Yamashita S. Retrovirus-mediated Herpes simplex virus thymidine kinase gene transduction renders human thyroid carcinoma cell lines sensitive to ganciclovir and radiation in vitro and in vivo.  Endocrinology. 1997;  138 4577-4583
  • 22 Braiden V, Nagayama Y, Iitaka M, Namba H, Niwa M, Yamashita S. Retrovirus-mediated suicide gene/prodrug therapy targeting thyroid carcinoma using a thyroid-specific promoter.  Endocrinology. 1998;  139 3996-3999
  • 23 Nagayama Y, Nishihara E, Iitaka M, Namba H, Yamashita S, Niwa M. Enhanced efficacy of transcriptionally targeted suicide gene/prodrug therapy for thyroid carcinoma with the Cre-loxP system.  Cancer Res. 1999;  59 3049-3052
  • 24 Zhang R, Straus FH, DeGroot LJ. Adenoviral-mediated gene therapy for thyroid carcinoma using thymidine kinase controlled by thyroglobulin promoter demonstrates high specificity and low toxicity.  Thyroid. 2001;  11 115-123
  • 25 Zhang R, Straus FH, DeGroot LJ. Cell-specific viral gene therapy of a Hurthle cell tumor.  J Clin Endocrinol Metab. 2002;  87 1407-1414
  • 26 Takeda T, Inaba H, Yamazaki M, Kyo S, Miyamoto T, Suzuki S, Ehara T, Kakizawa T, Hara M, De Groot LJ, Hashizume K. Tumor-specific gene therapy for undifferentiated thyroid carcinoma utilizing the telomerase reverse transcriptase promoter.  J Clin Endocrinol Metab. 2003;  88 3531-3538
  • 27 Kitazono M, Chuman Y, Aikou T, Fojo T. Construction of gene therapy vectors targeting thyroid cells: enhancement of activity and specificity with histone deacetylase inhibitors and agents modulating the cyclic adenosine 3',5'-monophospahte pathway and demonstration of activity in follicular and anaplastic thyroid carcinoma cells.  J Clin Endocrinol Metab. 2001;  86 834-840
  • 28 Takeda T, Yamazaki M, Minemura K, Imai Y, Inaba H, Suzuki S, Miyamoto T, Ichikawa K, Kakizawa T, Mori J-I, DeGroot LJ, Hashizume K. A tandemly repeated thyroglobulin core promoter has potential to enhance efficacy for tissue-spcififc gene therapy for thyroid carcinoma.  Cancer Gene Ther. 2002;  9 864-874
  • 29 Shimura H, Suzuki H, Miyazaki A, Furuya F, Ohta K, Haraguchi K, Endo T, Onaya T. Transcriptional activation of the thyroglobulin promoter directing suicide gene expression by thyroid transcrption factor-1 in thyroid cancer cells.  Cancer Res. 2001;  61 3640-3646
  • 30 Chun YS, Saji M, Zeiger MA. Overexpression of TTF-1 and PAX-8 restores thyroglobulin gene promoter activity in ARO and WRO cell lines.  Surgery. 1998;  124 1100-1105
  • 31 Ye C, Feng C, Wang S, Liu X, Lin Y, Li M. Antiangiogenic and antitumor effects of endostatin on follicular thyroid carcinoma.  Endocrinology. 2002;  143 3522-3528
  • 32 Zhang R, DeGroot LJ. Gene therapy of established medullary thyroid carcinoma with Herpes simplex viral thymidine kinase in a rat tumor model: relationship of bystander effect and antitumor efficacy.  Thyroid. 2000;  10 313-319
  • 33 Messina M, Yu DMT, Learoyd DL, Both GW, Molloy PL, Robinson BG. High level, tissue-specific expression of a modified calcitonin/calcitonin gene-related peptide promoter in a human medullary thyroid carcinoma cell line.  Mol Cell Endocrinol. 2000;  164 219-224
  • 34 Messina M, Yu DMT, Both GW, Molloy PL, Robinson BG. Calcitonin-specific transcription and splicing targets gene-directed enzyme prodrug therapy to medullary thyroid carcinoma cells.  J Clin Endocrinol Metab. 2003;  88 1310-1318
  • 35 Jiang S, Altmann A, Grimm D, Kleinschmidt JA, Schilling T, Germann C, Haberkorn U. Tissue-specific gene expression in medullary thyroid carcinoma cells employing calcitonin regulatory elements and AAV vectors.  Cancer Gene Ther. 2001;  8 469-472
  • 36 Minemura K, Takeda T, Minemura K, Nagasawa T, Zhang R, Leopardi R, DeGroot LJ. Cell-specific induction of sensitivity to ganciclovir in medullary thyroid carcinoma cells by adenovirus-mediated gene transfer of herpes simplex virus thymididne kinase.  Endocrinology. 2000;  141 1814-1822
  • 37 Zhang R, DeGroot LJ. Gene therapy of a rat follicular thyroid carcinoma model with adenoviral vectors transducing murine interleukin-12.  Endocrinology. 2003;  144 1393-1398
  • 38 Tanaka K, Towata S, Nakao K, Mizuguchi H, Hayakawa T, Niwa M, Ishii N, Nagayama Y. Thyroid cancer immunotherapy with retroviral and adenoviral vectors expressing granulocyte macrophage colony stimulating factor and interleukin-12 in a rat model.  Clin Endocrinol. 2003;  59 734-742
  • 39 Zhang R, DeGroot LJ. An adenoviral vector expressing functional heterogeneous proteins herpes simplex viral thymidine kinase and human interleukin-2 has enhanced in vivo antitumor activity against medullary thyroid carcinoma.  Endocr Relat Cancer. 2001;  8 315-325
  • 40 Soler MN, Milhaud G, Lekmine F, Treilhou-Lahille F, Klatzmann D, Lausson S. Treatment of medullary thyroid carcinoma by combined expression of suicide and interleukin-2 genes.  Cancer Immunol Immunother. 1999;  48 91-99
  • 41 Yamazaki M, Straus FH, Messina M, Robinson BG, Takeda T, Hasizume K, DeGroot LJ. Adenovirus-mediated tumor-specific combined gene therapy using Herpes simplex virus thymidine/ganciclovir system and murine interleukin-12 induces effective antitumor activity against medullary thyroid carcinoma.  Cancer Gene Ther. 2004;  11 8-15
  • 42 Barzon L, Bonaguro R, Castagliuolo I, Chilosi M, Franchin E, Vecchio C, Giaretta I, Boscaro M, Palu G. Gene therapy of thyroid cancer via retrovirally-driven combined expression of human interleukin-2 and Herpes simplex virus thymidine kinase.  Eur J Endocrinol. 2003;  148 73-80
  • 43 Barzon L, Pacenti M, Taccaliti A, Franchin E, Bruglia M, Boscaro M, Palu G. A pilot study of combined suicide/cytokine gene therapy in two patients with end-stage anaplastic thyroid carcinoma.  J Clin Endocrinol Metab. 2005;  90 2831-2834
  • 44 Barzon L, Bonaguro R, Castagliuolo I, Chilosi M, Gnatta E, Parolin C, Boscaro M, Palu G. Transcriptionally targeted retroviral vector for combined suicide and immunomodulating gene therapy of thyroid cancer.  J Clin Endocrinol Metab. 2002;  87 5304-5311
  • 45 Zhang R, Baunoch D, DeGroot LJ. Genetic immunotherapy for medullary thyroid carcinoma: destruction of tumors in mice by in vivo delivery of adenoviral vector transducing the murine interleukin-2 gene.  Thyroid. 1998;  8 1137-1146
  • 46 Zhang R, Straus FH, DeGroot LJ. Effective genetic therapy of established medullary thyroid carcinoma with murine interleukin-2: dissemination and cytotoxicity studies in a rat tumor model.  Endocrinology. 1999;  140 2152-2158
  • 47 Zhang R, DeGroot LJ. Genetic immunotherapy of established tumours with adenoviral vectors transducing murine interleukin-12 (mIL12) subunits in a rat medullary thyroid carcinoma model.  Clin Endocrinol. 2000;  52 687-694
  • 48 Yamazaki M, Zhang R, Straus FH, Messina M, Robinson BG, Hashizume K, DeGroot LJ. Effective gene therapy for medullary thyroid carcinoma using recombinant adenovirus inducing tumor-specific expression of interleukin-12.  Gene Ther. 2002;  9 64-74
  • 49 Spitzweg C, Morris JC. The sodium iodide symporter: its pathophysiological and therapeutic implications.  Clin Endocrinol. 2002;  57 559-574
  • 50 Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, Ginter CS, Carrasco N. The sodium/Iodide symporter (NIS): Characterization, regulation, and medical significance.  Endocrine Rev. 2003;  24 48-77
  • 51 Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter.  Nature. 1996;  379 458-460
  • 52 Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL, Jhiang SM. Cloning of the human sodium iodide symporter.  Biochem Biophys Res Commun. 1996;  226 339-345
  • 53 Spitzweg C, O’Connor MK, Bergert ER, Tindall DJ, Young CYF, Morris JC. Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter.  Cancer Res. 2000;  60 6526-6530
  • 54 Spitzweg C, Zhang S, Bergert ER, Castro MR, McIver BD, Heufelder AE, Tindall DJ, Young CYF, Morris JC. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines.  Cancer Res. 1999;  59 2136-2141
  • 55 Spitzweg C, Dietz AB, O’Connor MK, Bergert ER, Tindall DJ, Young CYF, Morris JC. In vivo sodium iodide symporter gene therapy of prostate cancer.  Gene Ther. 2001;  8 1524-1531
  • 56 Kakinuma H, Bergert ER, Spitzweg C, Cheville JC, Lieber MM, Morris JC. Probasin Promoter (ARR2PB)-driven, prostate-specific expression of h-NIS for targeted radioiodine therapy of prostate cancer.  Cancer Res. 2003;  63 7840-7844
  • 57 Spitzweg C, Scholz IV, Bergert ER, Tindall DJ, Young CYF, Göke B, Morris JC. Retinoic acid-induced stimulation of sodium iodide symporter (NIS) expression and cytotoxicity of radioiodine in prostate cancer cells.  Endocrinology. 2003;  144 3423-3432
  • 58 Scholz IV, Cengic N, Göke B, Morris JC, Spitzweg C. Dexamethasone enhances the catatonic effect of radioiodine therapy in prostate cancer cells expressing the sodium iodide symporter (NIS).  J Clin Endocrinol Metab. 2004;  89 1108-1116
  • 59 Dwyer RM, Schatz SM, Bergert ER, Myers RM, Harvey ME, Classic KL, Blanco MC, Frisk CS, Marler RJ, Davis BJ, O’Connor MK, Russell SJ, Morris JC. A preclinical large animal model of adenovirus-mediated expression of the sodium-iodide symporter for radioiodie imaging and therapy of locally recurrent prostate cancer.  Mol Ther. 2005;  12 835-841
  • 60 Spitzweg C, Baker CH, Bergert ER, O’Connor MK, Morris JC. Image-guided radioiodide therapy of medullary thyroid cancer following carcinoembryonic antigen (CEA)-promoter-targeted sodium iodide symporter (NIS) gene expression.  Hum Gene Ther. 2007;  18 916-924
  • 61 Scholz IV, Cengic N, Baker CH, Harrington KJ, Maletz K, Bergert ER, Vile R, Göke B, Morris JC, Spitzweg C. Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer.  Gene Ther. 2005;  12 272-280
  • 62 Willhauck MJ, Sharif-Samani B, Klutz K, Cengic N, Wolf T, Mohr L, Geissler M, Senekowitsch-Schmidtke R, Göke B, Morris JC, Spitzweg C. Alpha fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma.  Gene Ther. 2008;  15 214-223
  • 63 Spitzweg C. Der Natrium-Iodid-Symporter (NIS): Bedeutung für die Bildgebung und therapeutische Optionen. The Sodium Iodide Symporter: Its Implications for Imaging and Therapy.  Nuklearmediziner. 2007;  30 19-30
  • 64 Hinkel R, El-Aouni C, Olson T, Horstkotte J, Hannoppel E, Mayer S, Müller S, Willhauck MJ, Spitzweg C, Gildehaus FJ, Münzing W, Bock-Marquette I, DiMaio M, Hatzopoulos AK, Boekstegers P, Kupatt C. Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell mediated cardioprotection.  Circulation. 2008;  117 2232-2240
  • 65 Willhauck MJ, Sharif-Samani B, Senekowitsch-Schmidtke R, Wunderlich N, Göke B, Morris JC, Spitzweg C. Functional sodium iodide symporter expression in breast cancer xenograf in vivo after systemic treatment with retinoic acid and dexamethasone.  Breast Cancer Res Treat. 2008;  109 263-272
  • 66 Miyagawa M, Beyer M, Wagner B, Anton M, Spitzweg C, Gansbacher B, Schwaiger M, Benge FM. Cardiac reporter gene imaging using the human sodium/iodide symporter gene.  Cardiovasc Res. 2005;  65 195-202
  • 67 Goel A, Carlosn SK, Classic KL, Greiner S, Power AT, Bell JC, Russell SJ. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV (delta51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene.  Blood. 2007;  110 2343-2350
  • 68 Blechacz B, Splinter PL, Greiner S, Myers RM, Peng K-W, Federspiel MJ, Russel SJ, LaRusso NF. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma.  Hepatology. 2006;  44 1465-1477
  • 69 Merron A, Peerlinck I, Martin-Duque P, Burnet J, Quintanilla M, Mather S, Hingorani M, Harrington KJ, Vassaux G. SPECT/CT imaging of oncolytic adenovirus propagation in tumours in vivo using the Na/I symporter as a reporter gene.  Gene Ther. 2007;  14 1731-1738
  • 70 Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G. Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal.  Mol Ther. 2004;  9 436-442
  • 71 Dingli D, Kemp BJ, O’Connor MK, Morris JC, Russell SJ, Lowe VJ. Combined I-124 Positron Emission Tomography/Computed Tomography Imaging of NIS gene expression in animal models of stably transfected and intravenously transfected tumors.  Mol Imaging Biol. 2006;  8 16-23
  • 72 Shimura H, Haraguchi K, Myazaki A, Endo T, Onaya T. Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I symporter gene.  Endocrinology. 1997;  138 4493-4496
  • 73 Smit JW, Schroder-Van der Elst JP, Karperien M, Que I, Stokkel M, van der Heide D, Romijn JA. Iodide kinetics and experimental (131)I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line.  J Clin Endocrinol Metab. 2002;  87 1247-1253
  • 74 Schroeder-van der Elst JP, van der Heide D, Romijn JA, Smit JWA. Differential effects of natural flavonoids on growth and iodide content in a human Na/I symporter-transfected follicular thyroid carcinoma cell line.  Eur J Endocrinol. 2004;  150 557-564
  • 75 Petrich T, Knapp WH, Pötter E. Functional activity of human sodium/iodide symporter in tumor cell lines.  Nuklearmedizin. 2003;  42 15-18
  • 76 Haberkorn U, Beuter P, Kübler W, Eskerski H, Eisenhut M, Kinscherf R, Zitzmann S, Strauss LG, Dimitrakopoulou-Strauss A, Altmann A. Iodide kinetics and dosimetry in vivo after transfer of the human sodium iodide symporter gene in rat thyroid carcinoma cells.  J Nucl Med. 2004;  45 827-833
  • 77 Lee WW, Lee B, Kim SJ, Jin J, Moon DH, Lee H. Kinetics of iodide uptake and efflux in various human thyroid cancer cells by expressing sodium iodide symporter gene via recombinant adenovirus.  Oncol Rep. 2003;  10 845-849
  • 78 Lee YJ, Chung J-K, Shin JH, Kang JH, Jeong JM, Lee DS, Lee MC. In vitro and in vivo properties of a human anaplastic thyroid carcinoma cell line transfected with the sodium iodide symporter gene.  Thyroid. 2004;  14 889-895
  • 79 Hsieh Y-J, Ke C-C, Liu R-S, Wang F-H, Tang K-T, Chi C-W, Chen F-D, Lee C-H. Radioiodide imaging and treatment of ARO cancer xenograft in a mouse model after expression of human sodium iodide symporter.  Anticancer Res. 2007;  27 2515-2522
  • 80 Kim KI, Kang JH, Chung J-K, Lee YJ, Jeong JM, Lee DS, Lee MC. Doxorubicin enhances the expression of transgene under control of the CMV promoter in anaplastic thyroid carcinoma cells.  J Nucl Med. 2007;  48 1553-1561
  • 81 Lin X, Fischer AH, Ryu K-Y, Cho J-Y, Sferra TJ, Kloos RT, Mazzaferri EL, Jhiang SM. Application of the Cre/loxP system to enhance thyroid-targeted expression of sodium/iodide symporter.  J Clin Endocrinol Metab. 2004;  89 2344-2350
  • 82 Cengic N, Baker CH, Schütz M, Göke B, Morris JC, Spitzweg C. A novel therapeutic strategy for medullary thyroid cancer based on radioiodine therapy following tissue-specific sodium iodide symporter gene expression.  J Clin Endocrinol Metab. 2005;  90 4457-4464
  • 83 Furuya F, Shimura H, Miyazaki A, Taki K, Ohta K, Haraguchi K, Onaya T, Endo T, Kobayashi T. Adenovirus-mediated transfer of thyroid transcription factor-1 induces radioiodide organification and retention in thyroid cancer cells.  Endocrinology. 2004;  145 5397-5405
  • 84 Elisei R, Vivaldi A, Ciampi R, Faviana P, Basolo F, Santini F, Traino C, Pacini F, Pinchera A. Treatment with drugs able to reduce iodine efflux significantly increases the intracellular retention time in thyroid cancer cells stably transfected with sodium iodide symporter (NIS) cDNA.  J Clin Endocrinol Metab. 2006;  91 2389-2395
  • 85 Dadachova E, Bouzahzah B, Zuckier LS, Pestell RG. Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS).  Nucl Med Biol. 2002;  29 13-18
  • 86 Carlin S, Akabani G, Zalutsky MR. In vitro cytotoxicity of 211At-Astatide and 131I-Iodide to glioma tumor cells expressing the sodium/iodide symporter.  J Nucl Med. 2003;  44 1827-1838
  • 87 Willhauck MJ, Sharif-Samani B, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Meyer GJ, Knapp WH, Göke B, Morris JC, Spitzweg C. The potential of astatine-211 for NIS-mediated radionuclide in prostate cancer.  Eur J Nucl Med Mol Imaging. 2008;  35 1272-1281
  • 88 Willhauck MJ, Sharif Samani B, Gildehaus FJ, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Göke B, Morris JC, Spitzweg C. Application of 188Re as an alternative radionuclide for treatment of prostate cancer after tumor-specific sodium iodide symporter (NIS) gene expression.  J Clin Endocrinol Metab. 2007;  92 4451-4458
  • 89 Petrich T, Helmeke H-J, Meyer GJ, Knapp WH, Pötter E. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter.  Eur J Nucl Med Mol Imaging. 2002;  29 842-854
  • 90 Petrich T, Quintanilla-Martinez L, Korkmaz Z, Samson E, Helmeke HJ, Meyer GJ, Knapp WH, Pötter E. Effective cancer therapy with the a-particle emitter [211-At]astatine in a mouse model of genetically modified sodium/iodide symporter-expressing tumors.  Clin Cancer Res. 2006;  12 1342-1348

Correspondence

C. SpitzwegMD 

Klinikum Grosshadern

Medizinische Klinik II

Marchioninistraße 15

81377 München

Germany

Phone: +49/89/7095 0

Fax: +49/89/7095 88 87

Email: Christine.Spitzweg@med.uni-muenchen.de

    >