Aktuelle Urol 2010; 41(1): 35-42
DOI: 10.1055/s-0029-1224730

© Georg Thieme Verlag Stuttgart ˙ New York

Radiologisch-nuklearmedizinische Bildgebung des Prostatakarzinoms

Imaging of Prostate Cancer by Diagnostic Radiology and Nuclear MedicineA. Weidner1 , H. J. Michaely1 , A. Pelzer2 , M. S. Michel2 , F. Wenz3 , S. O. Schoenberg1 , D. J. Dinter1
  • 1Institut für Klinische Radiologie und Nuklearmedizin, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim
  • 2Urologische Klinik, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim
  • 3Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim
Further Information

Publication History

Publication Date:
15 December 2009 (online)


Die radiologische und nuklearmedizinische Bildgebung in der Diagnostik des Prostatakarzinoms sowie von lokoregionären Rezidiven und even­tuell befallener Lymphknoten hat in den letzten Jahren wesentliche Fortschritte erzielt. Mit der technischen Weiterentwicklung im Bereich der Magnetresonanztomografie (MRT) und der nuklearmedizinischen Tracer konnte eine Erhöhung der Sensitivität auf 85–90 % und der Spezifität auf 75–90 % erreicht werden. Insbesondere die MRT hat mit der Einführung der Spektroskopie und diffusionsgewichteter Sequenzen, aber auch mit dem zunehmenden klinischen Einsatz von ­Sequenzen zur Auswertung der Perfusion wesentliche Beiträge in der multiparametrischen Diagnostik geliefert. Mithilfe von speziellen lymphknotenspezifischen Kontrastmitteln, sogenannten „ultrasmall paramagnetic iron particles“ ­(USPIO) konnten in Studien bis zu 100 % aller patholo­gisch befallenen Lymphknoten detektiert werden. Auch in der nuklearmedizinischen Diagnostik konnten wesentliche Fortschritte durch die Entwicklung von an 18Fluor koppelbare Tracer ­erreicht werden, die sich durch eine längere Halbwertszeit auszeichnen und daher auch an Insti­tuten ohne eigenes Zyklotron verwendet wer­den können. Die ­so erreichten Sensitivitäten und Spezifitäten für die Detektion des Primär­tumors und loko­re­gio­närer Rezidive liegen damit zwischen 85 und 95 %.


The diagnostic methods in radiology and nuclear medicine for the imaging of prostate cancer as well as for the detection of locoregional recurrent disease and positive lymph nodes have pro­gressed dramatically over the past years. Regard­ing technical advances in magnetic resonance imaging (MRI) and the new tracers used in nu­clear medicine, an increase in sensitivity up to 85–90 % and in specificity up to 75–90 % has been achieved. Especially in MRI, efforts had been made to implement multiparametric imaging using the diagnostic methods of spectroscopy and diffusion-weighted sequences and by includ­ing dynamic contrast enhancement studies. In ­addition, by the use of dedicated, lymph-node specific contrast media, “ultrasmall paramagnetic iron particles” (USPIO), up to 100 % of all patho­log­ical lymph nodes were detected in the pub­lished studies. Also in the field of nuclear medicine there have been relevant advances such as the development of specific tracer substances, which can be coupled to 18fluorine, a nuclide that is characterised by a longer half-life time than 11C and is therefore usable even in sites without an in-house cyclotron. Using this nuclide, the sensi­tivity and specificity rates in the detection of ­primary prostate cancer as well as in locoregional ­recurrences have been increased to values be­tween 85 and 95 %.


  • 1 Hricak H, Choyke P L, Eberhardt S C et al. Imaging prostate cancer: a multidisciplinary perspective.  Radiology. 2007;  243 28-53
  • 2 Kramer S, Gorich J, Gottfried H W et al. Sensitivity of computed tomography in detecting local recurrence of prostatic carcinoma following radical prostatectomy.  Br J Radiol. 1997;  70 995-999
  • 3 Purohit R S, Shinohara K, Meng M V et al. Imaging clinically localized prostate cancer.  Urol Clin North Am. 2003;  30 279-293
  • 4 Masterson T A, Touijer K. The role of endorectal coil MRI in preoperative staging and decision-making for the treatment of clinically localized prostate cancer.  MAGMA. 2008;  21 371-377
  • 5 Mazaheri Y, Shukla-Dave A, Muellner A et al. MR imaging of the prostate in clinical practice.  MAGMA. 2008;  21 379-392
  • 6 Kurhanewicz J, Vigneron D, Carroll P et al. Multiparametric magnetic resonance imaging in prostate cancer: present and future.  Curr Opin Urol. 2008;  18 71-77
  • 7 Kaji Y, Kurhanewicz J, Hricak H et al. Localizing prostate cancer in the presence of postbiopsy changes on MR images: role of proton MR spectroscopic imaging.  Radiology. 1998;  206 785-790
  • 8 Qayyum A, Coakley F V, Lu Y et al. Organ-confined prostate cancer: ­effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging.  AJR Am J Roentgenol. 2004;  183 1079-1083
  • 9 Futterer J J. MR imaging in local staging of prostate cancer.  Eur J Radiol. 2007;  63 328-334
  • 10 Schiebler M L, Schnall M D, Pollack H M et al. Current role of MR imaging in the staging of adenocarcinoma of the prostate.  Radiology. 1993;  189 339-352
  • 11 Beyersdorff D, Taupitz M, Winkelmann B et al. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging.  Radiology. 2002;  224 701-706
  • 12 Futterer J J, Scheenen T W, Heijmink S W et al. Standardized threshold ­approach using three-dimensional proton magnetic resonance spectroscopic imaging in prostate cancer localization of the entire prostate.  Invest Radiol. 2007;  42 116-122
  • 13 Kim C K, Park B K. Update of prostate magnetic resonance imaging at 3 T.  J Comput Assist Tomogr. 2008;  32 163-172
  • 14 van As N J, de Souza N M, Riches S F et al. A Study of diffusion-weighted magnetic resonance imaging in men with untreated localised prostate cancer on active surveillance.  Eur Urol. 2008; 
  • 15 Harisinghani M G, Barentsz J, Hahn P F et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.  N Engl J Med. 2003;  348 2491-2499
  • 16 Harisinghani M G, Saksena M A, Hahn P F et al. Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization?.  AJR Am J Roentgenol. 2006;  186 144-148
  • 17 Heidenreich A, Aus G, Bolla M et al. EAU guidelines on prostate cancer.  Eur Urol. 2008;  53 68-80
  • 18 Mulhall J P, Secin F P, Guillonneau B. Artery sparing radical prostatec­tomy – myth or reality?.  J Urol. 2008;  179 827-831
  • 19 Jayachandran J, Banez L L, Levy D E et al. Risk stratification for biochemical recurrence in men with positive surgical margins or extracapsular disease after radical prostatectomy: results from the SEARCH database.  J Urol. 2008;  17 1791-1796 , discussion 1796
  • 20 Bloch B N, Furman-Haran E, Helbich T H et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolu­tion dynamic contrast-enhanced and T2-weighted MR imaging – initial results.  Radiology. 2007;  245 176-185
  • 21 Sala E, Eberhardt S C, Akin O et al. Endorectal MR imaging before salvage prostatectomy: tumor localization and staging.  Radiology. 2006;  238 176-183
  • 22 Hricak H, Wang L, Wei D C et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy.  Cancer. 2004;  100 2655-2663
  • 23 Mendenhall W M, Henderson R H, Mendenhall N P. Definitive radiotherapy for prostate cancer.  Am J Clin Oncol. 2008;  31 496-503
  • 24 Pollack A, Hanlon A, Horwitz E M et al. Radiation therapy dose escalation for prostate cancer: a rationale for IMRT.  World J Urol. 2003;  21 200-208
  • 25 Djavan B, Ravery V, Zlotta A et al. Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop?.  J Urol. 2001;  166 1679-1683
  • 26 Fuchsjager M, Shukla-Dave A, Akin O, Barentsz J et al. Prostate cancer imaging.  Acta Radiol. 2008;  49 107-120
  • 27 Cheikh A B, Girouin N, Colombel M et al. Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy.  Eur Radiol. 2008; 
  • 28 Pondman K M, Futterer J J, ten Haken B et al. MR-guided biopsy of the prostate: an overview of techniques and a systematic review.  Eur Urol. 2008;  54 517-527
  • 29 Pucar D, Hricak H, Shukla-Dave A et al. Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence.  Int J Radiat Oncol Biol Phys. 2007;  69 62-69
  • 30 Speight J L, Roach 3rd  M. Radiotherapy in the management of clinically localized prostate cancer: evolving standards, consensus, controversies and new directions.  J Clin Oncol. 2005;  23 8176-8185
  • 31 Lohr F, Fuss M, Tiefenbacher U et al. [Optimizing the use of radiotherapy with IMRT and image guided location of advanced prostate cancer].  Urologe A. 2004;  43 43-51
  • 32 Zelefsky M J, Fuks Z, Hunt M et al. High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients.  Int J Radiat Oncol Biol Phys. 2002;  53 1111-1116
  • 33 Lin A M, Small E J. Prostate cancer update: 2006.  Curr Opin Oncol. 2007;  19 229-233
  • 34 deSouza N M, Riches S F, Vanas N J et al. Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer.  Clin Radiol. 2008;  63 774-782
  • 35 Zakian K L, Sircar K, Hricak H et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic ­analysis after radical prostatectomy.  Radiology. 2005;  234 804-814
  • 36 Ziegler S I. Instrumentierung: SPECT, PET, PET / CT. In: Krause BJ, Buck A, Schwaiger M, eds, Nuklearmedizinische Onkologie. 1st ed. Landsberg: ecomed Medizin; 2007: 17–25
  • 37 Hofer C, Laubenbacher C, Block T et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy.  Eur Urol. 1999;  36 31-35
  • 38 Liu I J, Zafar M B, Lai Y H et al. Fluorodeoxyglucose positron emission ­tomography studies in diagnosis and staging of clinically organ-confined prostate cancer.  Urology. 2001;  57 108-111
  • 39 Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R et al. Over­expression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers.  Biochem Biophys Res Commun. 2002;  296 580-583
  • 40 Zheng Q H, Gardner T A, Raikwar S et al. [11C]Choline as a PET biomarker for assessment of prostate cancer tumor models.  Bioorg Med Chem. 2004;  12 2887-2893
  • 41 Farsad M, Schiavina R, Castellucci P et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET / CT with histopathologic step-section analysis.  J Nucl Med. 2005;  46 1642-1649
  • 42 Martorana G, Schiavina R, Corti B et al. 11C-choline positron emission tomography / computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy.  J Urol. 2006;  176 954-960 , discussion 960
  • 43 Reske S N, Blumstein N M, Neumaier B et al. Imaging prostate cancer with 11C-choline PET / CT.  J Nucl Med. 2006;  47 1249-1254
  • 44 Scher B, Seitz M, Albinger W et al. Value of 11C-choline PET and PET / CT in patients with suspected prostate cancer.  Eur J Nucl Med Mol Imaging. 2007;  34 45-53
  • 45 Yamaguchi T, Lee J, Uemura H et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy.  Eur J Nucl Med Mol Imaging. 2005;  32 742-748
  • 46 de Jong I J, Pruim J, Elsinga P H et al. Visualization of prostate cancer with 11C-choline positron emission tomography.  Eur Urol. 2002;  42 18-23
  • 47 Kotzerke J, Zophel K, Salomon G et al. [Pro and contra: 11C choline PET in diagnosis of prostate cancer].  Aktuelle Urol. 2007;  38 189-194
  • 48 Heinisch M, Dirisamer A, Loidl W et al. Positron emission tomography / computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA < 5 ng / ml?.  Mol Imaging Biol. 2006;  8 43-48
  • 49 Krause B J, Souvatzoglou M, Tuncel M et al. The detection rate of [11C]choline-PET / CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer.  Eur J Nucl Med Mol Imaging. 2008;  35 18-23

Priv. Doz. Dr. med. D. J. Dinter

Institut für Klinische Radiologie und Nuklearmedizin · Universitätsmedizin Mannheim · Medizinische Fakultät Mannheim der Universität Heidelberg

Theodor-Kutzer-Ufer 1–3

68167 Mannheim

Phone: +49 / 6 21 / 3 83 22 76

Fax: +49 / 6 21 / 3 83 38 17

Email: dietmar.dinter@umm.de