Subscribe to RSS
DOI: 10.1055/s-0029-1245369
© Georg Thieme Verlag KG Stuttgart · New York
Transcranial Perfusion Sonography Using a Low Mechanical Index and Pulse Inversion Harmonic Imaging: Reliability, Inter-/Intraobserver Variability
Transkranielle Perfusionssonografie mit niedrigem mechanischem Index und Pulse Inversion Harmonic Imaging: Reliabilität, Inter-/Intra-Observer-VariabilitätPublication History
received: 22.12.2009
accepted: 18.3.2010
Publication Date:
22 April 2010 (online)

Zusammenfassung
Ziel: Die transkranielle Perfusionssonografie (TPS) ist eine neue, nicht invasive Methode zur Darstellung der Hirnperfusion. Ziel war die Bewertung einer neuen TPS-Modalität, die einen niedrigen MI mit einer hohen (nahezu Echtzeit) Bildrate kombiniert und die Untersuchung deren Intra- und Interobserver-Variabilität. Material und Methoden: 10 gesunde Probanden erhielten 3-mal TPS mit einem niedrigen MI (1,0) und einer hohen Bildrate (8,3 Hz). Die Untersuchungen wurden von 2 Sonografeuren im Cross-over-Design durchgeführt: 1. 2-fache Messungen bei je 5 Probanden (Intraobserver-Testung); und 2. einfache Untersuchung der jeweils anderen 5 Probanden (Interobserver-Testung). Aus 8 etablierten Regions of Interest (ROI) wurden Zeitintensitätskurven (TIC) und deren Maximalintensität (PI), Zeit-bis-zur-PI (TTP), Fläche-unter-der-Kurve (AUC) und zerebrale Transitzeit (CTT) berechnet. Die Qualität der TIC wurde mithilfe des Determinationskoeffizienten abgebildet. TIC-Parameter wurden deskriptiv dargestellt. Intra- und Interobserver-Variabilität wurde nach Spearman untersucht. Ergebnisse: Die TIC-Qualität war sehr gut (r2 = 0,92, 0,87 – 0,97). Die Intraobserver-Variabilität war bei dem erfahreneren Untersucher geringer (r = 0,70 vs. r = 0,29). Die Interobserver-Reliabilität lag bei r = 0,34 (p < 0,05) und war damit moderat. TTP (25,7 – 28,1 s; Mittel 26,8 s) und CTT (8,2 – 10,7 s; Mittel 9,9 s) waren die robustesten Parameter. Schlussfolgerung: TPS mit niedrigem MI erlaubt transkranielle Perfusionsuntersuchungen unter nahezu Echtzeitbedingungen. Dies ermöglicht eine bessere Kontrolle der Sondenposition. Solide Ultraschallerfahrung gewährt eine hohe Reliabilität dieser Technik und macht TPS zu einem interessanten Modus für Diagnostik und Follow-up von Perfusionsveränderungen z. B. bei Schlaganfällen oder anti-angiogenetischer Tumortherapie.
Abstract
Purpose: Transcranial perfusion sonography (TPS) is an emerging noninvasive bedside method for evaluating brain perfusion. The purpose was to assess the feasibility of a low MI/almost real-time frame rate approach and to test its intra-/interobserver variability. Materials and Methods: 10 healthy volunteers were investigated 3 times with TPS at a low MI (1.0) and a high frame rate (8.3 Hz). Investigations were performed by 2 sonographers in a cross-over design: 1.) twofold measurements each with 5 volunteers (intraobserver test), and 2.) single measurements of the other 5 volunteers (interobserver test). From 8 established regions of interest (ROI), time-intensity curves (TIC) with the following parameters were calculated: peak intensity (PI), time-to-PI (TTP), area-under-curve (AUC), and cerebral transit time (CTT). The TIC quality was described by the coefficient of determination. TIC parameters were presented descriptively. Intra- and interobserver variability was tested by Spearman’s correlation. Results: The overall quality of the TIC was very good (mean r2 = 0.92, 0.87 – 0.97). TTP (25.7 – 28.1 sec; mean 26.8 sec) and CTT (8.2 – 10.7 sec; mean 9.9 sec) were the most robust parameters. The intraobserver variability was lower with the more experienced sonographer (r = 0.70 vs. r = 0.29). The interobserver reliability was r = 0.34 (p < 0.05). Conclusion: Low MI TPS allows for nearly real-time imaging facilitating probe control. Sound sonographer experience allows for a high reliability and makes TPS an interesting tool for the diagnosis and follow-up of perfusion changes, e. g. in stroke or anti-angiogenic brain tumor therapy.
Key words
harmonic imaging - brain perfusion - transcranial sonography - ultrasound contrast agents - microcirculation
References
- 1
Postert T, Federlein J, Weber S et al.
Second harmonic imaging In acute middle cerebral artery infarction. Preliminary results.
Stroke.
1999;
30
1702-1706
MissingFormLabel
- 2
Meairs S, Daffertshofer M, Neff W et al.
Pulse-inversion contrast harmonic imaging: ultrasonographic assessment of cerebral
perfusion.
Lancet.
2000;
355
550-551
MissingFormLabel
- 3
Stolz E, Allendörfer J, Jauss M et al.
Sonographic harmonic grey scale imaging of brain perfusion: scope of a new method
demonstrated in selected cases.
Ultraschall in Med.
2002;
81
320-324
MissingFormLabel
- 4
Seidel G, Albers T, Meyer K et al.
Perfusion harmonic imaging in acute middle cerebral artery infarction.
Ultrasound Med Biol.
2003;
29
1245-1251
MissingFormLabel
- 5
Harrer J U, Mayfrank L, Mull M et al.
Second harmonic imaging: a new ultrasound technique to assess human brain tumour perfusion.
J Neurol Neurosurg Psychiatry.
2003;
74
333-338
MissingFormLabel
- 6
Harrer J U, Klötzsch C, Stracke C P et al.
Cerebral perfusion sonography in comparison with perfusion MRT: a study in healthy
volunteers.
Ultraschall in Med.
2004;
25
263-269
MissingFormLabel
- 7
Shiogai T, Takayasu N, Mizuno T et al.
Comparison of transcranial brain tissue perfusion images between ultraharmonic, second
harmonic, and power harmonic imaging.
Stroke.
2004;
35
687-693
MissingFormLabel
- 8
Bartels E, Bittermann H J.
Kontrastverstärkte transkranielle sonographische Darstellung der zerebralen Perfusion
bei Schlaganfällen nach dekompressiver Kraniotomie.
Ultraschall in Med.
2004;
25
206-213
MissingFormLabel
- 9
Eyding J, Krogias C, Wilkening W et al.
Detection of cerebral perfusion abnormalities in acute stroke using phase inversion
harmonic imaging (PIHI): preliminary results.
J Neurol Neurosurg Psychiatry.
2004;
75
926-929
MissingFormLabel
- 10
Wiesmann M, Meyer K, Albers T et al.
Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke.
Stroke.
2004;
35
508-513
MissingFormLabel
- 11 Becker G, Griewing B. Examination techniques. In Bogdahn U, Becker G, Schlachetzki F, ed Echoenhancers and Transcranial Color Duplex Sonography.. Berlin, Vienna: Blackwell Science; 1998: 219-250
MissingFormLabel
- 12
Barnett S B, Rott H D, ter Haar G R et al.
The sensitivity of biological tissue to ultrasound.
Ultrasound Med Biol.
1997;
23
805-812
MissingFormLabel
- 13
Seidel G, Meyer K.
Harmonic imaging – a new method for the sonographic assessment of cerebral perfusion.
Eur J Ultrasound.
2001;
14
103-113
MissingFormLabel
- 14
Harrer J U, Hornen S, Valaikiene J et al.
Transcranial Ultrasound Perfusion Imaging: Implementation of a low MI and a high frame
rate.
Ultraschall in Med.
2007;
28
380-386
MissingFormLabel
- 15 Zar J H. Biostatistical Analysis. Englewood Cliffs: Prentice-Hall Int. Edition; 1984
MissingFormLabel
- 16 Siegel S, Castellan N J. Non-parametric Statistics for the Behavioural Sciences. New York: McGaw-Hill; 2000
MissingFormLabel
- 17
Postert T, Muhs A, Meves S et al.
Transient response harmonic imaging.
Stroke.
1998;
29
1901-1907
MissingFormLabel
- 18
Harrer J U, Klötzsch C.
Second harmonic imaging of the human brain: The practicability of coronal insonation
planes and alternative perfusion parameters.
Stroke.
2002;
33
1530-1535
MissingFormLabel
- 19
Harrer J U, Möller-Hartmann W, Oertel M F et al.
Perfusion imaging of high-grade gliomas: comparison of contrast harmonic imaging and
magnetic resonance imaging.
J Neurosurg.
2004;
101
700-703
MissingFormLabel
- 20
Schlachetzki F, Hoelscher T, Dorenbeck U et al.
Sonographic parenchymal and brain perfusion imaging: preliminary results in four patients
following decompressive surgery for malignant middle cerebral artery infarct.
Ultrasound Med Biol.
2001;
27
21-31
MissingFormLabel
- 21
Kern R, Perren F, Schoenberger K et al.
Ultrasound microbubble destruction imaging in acute middle cerebral artery stroke.
Stroke.
2004;
35
1665-1670
MissingFormLabel
- 22
Seidel G, Cangur H, Meyer-Wiethe K et al.
On the ability of ultrasound parametric perfusion imaging to predict the area of infarction
in acute ischemic stroke.
Ultraschall in Med.
2006;
27
543-548
MissingFormLabel
- 23
Bartels E, Henning S, Wellmer A et al.
Bestimmung des zerebralen Perfusionsdefizits bei Schlaganfallpatienten mittels der
neuen transkraniellen kontrastmittelverstärkten CPS™-Technologie – Vorläufige Ergebnisse.
Ultraschall in Med.
2005;
26
478-486
MissingFormLabel
- 24
Seidel G, Meyer-Wiethe K, Berdien G et al.
Ultrasound perfusion imaging in acute middle cerebral artery infarction predicts outcome.
Stroke.
2004;
35
1107-1111
MissingFormLabel
- 25
Meyer-Wiethe K, Cangür H, Schindler A et al.
Ultrasound perfusion imaging: determination of thresholds for the identification of
critically disturbed perfusion in acute ischemic stroke – a pilot study.
Ultrasound Med Biol.
2007;
33
851-856
MissingFormLabel
- 26
Singer O C, Sitzer M, du Mesnil de Rochemont R et al.
Practical limitations of acute stroke MRI due to patient-related problems.
Neurology.
2004;
62
1848-1849
MissingFormLabel
- 27
Kaijser M, Larsson J, Rosenberg L et al.
Anterior Dynamic Ultrasound of the Infant Hip: Evaluation of Investigator Dependence.
Acta Radiol.
2009;
50
690-695
MissingFormLabel
- 28
Strauss S, Gavish E, Gottlieb P et al.
Interobserver and Intraobserver Variability in the Sonographic Assessment of Fatty
Liver.
Am J Roentgenol.
2007;
189
320-323
MissingFormLabel
- 29
Shen Q, Stuart J, Venkatesh B et al.
Inter Observer Variability of the Transcranial Doppler Ultrasound Technique: Impact
of Lack of Practice on the Accuracy of Measurement.
J Clin Mon Comp.
1999;
15
179-184
MissingFormLabel
- 30
Vos M J, Uitdehaag B MJ, Barkhof F et al.
Interobserver variability in the radiological assessment of response to chemotherapy
in glioma.
Neurology.
2003;
60
826-830
MissingFormLabel
- 31
Meves S H, Wilkening W, Thies T et al.
Comparison between echo contrast agent-specific imaging modes and perfusion-weighted
magnetic resonance imaging for the assessment of brain perfusion.
Stroke.
2002;
33
2433-2437
MissingFormLabel
- 32
Hacke W, Jansen O, Schellinger P D et al.
Magnetresonanztomographie beim akuten Schlaganfall: Möglichkeiten, Ergebnisse und
Perspektiven.
Dtsch Arztebl.
2002;
99
A1361-A1370
MissingFormLabel
- 33
Neumann-Haefelin T, Wittsack H J, Wenserski F et al.
Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke.
Stroke.
1999;
30
1591-1597
MissingFormLabel
- 34
Sobesky J, Zaro Weber O, Lehnhardt F G et al.
Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted
magnetic resonance imaging and positron emission tomography in acute ischemic stroke.
Stroke.
2004;
35
2843-2847
MissingFormLabel
- 35
Eyding J, Nolte-Martin A, Krogias C et al.
Changes of contrast-specific ultrasonic cerebral perfusion patterns in the course
of stroke; reliability of region-wise and parametric imaging analysis.
Ultrasound Med Biol.
2007;
33
329-334
MissingFormLabel
- 36
Eyding J, Krogias C, Schöllhammer M et al.
Contrast-enhanced ultrasonic parametric perfusion imaging detects dysfunctional tissue
at risk in acute MCA stroke.
J Cereb Blood Flow Metab.
2006;
26
576-582
MissingFormLabel
- 37
Eyding J, Krogias C, Wilkening W et al.
Parameters of cerebral perfusion in phase-inversion harmonic imaging (PIHI) ultrasound
examinations.
Ultrasound Med Biol.
2003;
29
1379-1385
MissingFormLabel
- 38
Grandin C B, Duprez T P, Smith A M et al.
Which MR-derived perfusion parameters are the best predictors of infarct growth in
hyperacute stroke? Comparative study of relative and quantitative measurements.
Radiology.
2002;
223
361-370
MissingFormLabel
- 39
Harrer J U, Parker G JM, Haroon A H et al.
Comparative Study of Methods for Determining Vascular Permeability and Blood Volume
in Human Gliomas.
J Magn Reson Imaging.
2004;
20
748-75
MissingFormLabel
Dr. Judith U. Harrer
Neurology, MVZ at Caritas Klinik St. Theresia
Rheinstr. 2
66113 Saarbrücken
Germany
Phone: ++ 49/6 81- 4 06 32 01
Fax: ++ 49/6 81- 4 06 32 03
Email: judith.harrer@web.de