Diabetologie und Stoffwechsel 2010; 5(3): 176-183
DOI: 10.1055/s-0030-1247418
Übersicht

© Georg Thieme Verlag Stuttgart ˙ New York

Maturity Onset Diabetes of the Young (MODY): Eine monogene Form der pankreatischen β-Zell-Dysfunktion

Maturity Onset Diabetes of the Young (MODY): A Monogenetic Form of Pancreatic β-Cell DysfunctionB. Knebel1 , D. Muller-Wieland2 , J. Kotzka1
  • 1Institut für Klinische Biochemie und Pathobiochemie, Deutsches Diabetes Zentrum, Leibnitz Zentrum für Diabetes Forschung an der Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Deutschland
  • 2Institut für Diabetes-Forschung, Abteilung für Allgemeine Innere Medizin, Asklepios Klinik St. Georg, 20099 Hamburg, Deutschland
Further Information

Publication History

Publication Date:
24 June 2010 (online)

Zusammenfassung

Der Begriff „Maturity-Onset Diabetes of the Young“ (MODY) subsumiert unterschiedliche Syndrome des früh auftretenden Typ-2-Diabetes mit autosomal dominanter monogenetischer Ätiologie. Mittlerweile spricht man von bis zu zehn verschiedenen Genen, die ursächlich sind. Eine Klassifizierung der mit MODY-assoziierten Gene weist auf, dass es sich in erster Linie um Transkriptionsfaktoren des genregulatorischen Netzwerks der pankreatischen β-Zelle handelt. Dementsprechend kann der MODY als eine monogene Form der β-Zell-Dysfunktion mit direkter Genotyp- / Phänotyp-Korrelation durch Mutationen in spezifischen Genen für die einzelnen MODY Subtypen betrachtet werden. Da allerdings jedes Individuum ein einmaliges, individuelles Genom, das durch die Summe aller genetischen Variationen und Veränderungen bestimmt wird, aufweist, macht erst dieses sogenannte „genetische Setting“ die Suszeptibilität aus, die für die Ausprägung, aber auch Progression eines bestimmten Syndroms verantwortlich ist. Anders ausgedrückt stellt das genetische Setting quasi den Rahmen dar, in dem der individuelle Lebensstil ausgestaltet werden kann, ohne dass sich ein Phänotyp manifestiert. In dieser Übersicht wird weniger auf die einzelnen Gene eingegangen, als vielmehr die Einsicht vermittelt, dass MODY eine monogene Form der β-Zell-Dysfunktion ist, die man als eine genetische Suszeptibilität mit eindeutiger unausweichlicher Prognose betrachten kann. Hieraus resultiert, dass die Progression der β-Zell Dekompensation bis zu einem gewissen Ausmaß durch Änderung des Lebensstils, wenn nicht verhindert, so doch wenigstens verzögert werden kann. Deshalb gestattet die molekulare Analyse der Kandidatengene Aufschluss über das individuelle genetische Setting eines Probanden zu geben und damit einen Hinweis auf das Risiko bzw. die genetische Prädisposition für die Entwicklung einer monogenen Form der β-Zell-Dysfunktion.

Abstract

The term “Maturity-Onset Diabetes of the Young” (MODY) summarizes different syndromes of early onset type-2-diabetes with autosomal dominant inherited monogenetic etiology. Meanwhile up to ten genes have been identified to be causative. A classification of MODY associated genes re­vealed them mainly as transcription factors of the gene regulatory network necessary for pan­creatic β-cell function and development. There­fore MODY can be seen as monogenic form of β-cell dysfunction with direct genotype / phenotype correlation caused by mutations in specific genes for the various MODY subtypes. However, every individual has a unique individual genome de­fined by the sum of all genetic variations and variants that makes up the personal “genetic setting” accounting for the susceptibility being respon­sible for the development and progression of a syndrome. In other words, the genetic setting is sort of framework in which the individual lifestyle can be designed without a phenotype manifested. This overview is less addressed to discuss the different genes, but rather conveys the idea that MODY is a monogenic form of β-cell dysfunction, which can be regarded as a genetic susceptibility, with clearly inevitable prognosis. The result is that the progressions of β-cell decompensation, to some extent by changes in lifestyle cannot be prevented, but will at least be delayed. Therefore the molecular analyses of candidate genes allows to sheds light on the individual genetic setting of a subject and thus give an indication of the risk or the genetic predisposition for the development of a monogenic form of β-cell dysfunction.

Literatur

  • 1 Frayling T M, Evans J C, Bulman M P et al. β-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors.  Diabetes. 2001;  50 94-100
  • 2 Stride A, Hattersley A T. Different genes, different diabetes: lessons from maturity-onset diabetes of the young.  Ann Med. 2002;  34 207-216
  • 3 Barroso I. Genetics of Type 2 diabetes.  Diabet Med. 2005;  22 517-535
  • 4 Knebel B, Muller-Wieland D. MODY: Lessons from monogenetic diabetes forms. In: Type 2 Diabetes: Principles and Practice, Second Edition. 2008: 429–437
  • 5 Neve B, Fernandez-Zapico M E, Ashkenazi-Katalan V et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function.  Proc Nat Acad Sci. 2005;  102 4807-4812
  • 6 Raeder H, Johansson S, Holm P I et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction.  Nature Genet. 2006;  38 54-62
  • 7 Plengvidhya N, Kooptiwut S, Songtawee N et al. PAX4 mutations in Thais with maturity onset diabetes of the young.  J Clin Endocr Metab. 2007;  92 2821-2826
  • 8 Maestro M A, Cardalda C, Boj S F et al. Distinct roles of HNF1beta, HNF1alpha, and HNF4alpha in regulating pancreas development, beta-cell function and growth.  Endocr Dev. 2007;  12 33-45
  • 9 Bernardo A S, Hay C W, Docherty K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell.  Mol Cell Endocrinol. 2008;  294–2 1-9
  • 10 Cerf M. Transcription factors regulating beta-cell function.  Eur J Endocrinol. 2006;  155 671-679
  • 11 Andrali S S, Sampley M L, Vanderford N L et al. Glucose regulation of insulin gene expression in pancreatic beta-cells.  ME Biochem J. 2008;  415 1-10
  • 12 Ashcroft F M. ATP-sensitive Kþ channels and disease: from molecule to malady.  American Journal of Physiology Endocrinology and Metabolism. 2007;  293 E880-E889
  • 13 Babenko A P, Polak M, Cave H et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus.  N Engl J Med. 2006;  355 456-466
  • 14 Colombo C, Delvecchio M, Zecchino C Early Onset Study Group of the Italian Society of Paediatric Endocrinology and Diabetology et al. Transient neonatal diabetes mellitus is associated with a recurrent (R201H) KCNJ11 (KIR6.2) mutation.  Diabetologia. 2005;  48 2439-2441
  • 15 Edghill E L, Gloyn A l, Goriely A et al. Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings.  J Clin Endocr Metab. 2007;  92 1773-1777
  • 16 Gloyn A L, Pearson E R, Antcliff J F et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir62 and permanent neonatal diabetes.  New Eng J Med. 2004;  350 1838-1849
  • 17 Flanagan S E, Patch A-M, Mackay D J et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood.  Diabetes. 2007;  56 1930-1937
  • 18 Njolstad P R, Sovik O, Cuesta-Munoz A et al. Neonatal diabetes mellitus due to complete glucokinase deficiency.  New Engl J Med. 2001;  344 1588-1592
  • 19 Gloyn A L, Ellard S, Shield J P et al. Complete glucokinase deficiency is not a common cause of permanent neonatal diabetes.  Diabetologia. 2002;  45 290
  • 20 Støy J, Edghill E L, Flanagan S E et al. Neonatal Diabetes International Collaborative Group Insulin gene mutations as a cause of permanent neonatal diabetes.  Proc Natl Acad Sci U S A. 2007;  104 15040-15044
  • 21 Senee V, Vattem K M, Delepine M et al. Wolcott-Rallison Syndrome: Clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity.  Diabetes. 2004;  53 1876-1883
  • 22 Wildin R S, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy.  Nat Genet. 2001;  27 18-20
  • 23 Conn J J, Simm P J, Oats J J et al. Neonatal hyperinsulinaemic hypoglycaemia and monogenic diabetes due to a heterozygous mutation of the HNF4A gene.  Aust N Z J Obstet Gynaecol. 2009;  49 328-330
  • 24 Yoo H W, Shin Y L, Seo E J et al. Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi-Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia.  Eur J Pediatr. 2002;  161 351-335
  • 25 Yorifuji T, Kurokawa K, Mamada M et al. Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: Phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1beta gene due to germline mosaicism.  J Clin Endocrinol Metab. 2004;  89 2905-2908
  • 26 Edghill E L, Bingham C, Slingerland A S et al. Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: Support for a critical role of HNF-1[beta] in human pancreatic development.  Diabet Med. 2006;  23 1301-1306
  • 27 Stoffers D A, Zinkin N T, Stanojevic V et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence.  Nat Genet. 1997;  15 106-110
  • 28 Schwitzgebel V M, Mamin A, Brun T et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1.  Clin Endocrinol Metab. 2003;  88 4398-4406
  • 29 Sellick G S, Barker K T, Stolte-Dijkstra I et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis.  Nat Genet. 2004;  36 1301-1305
  • 30 Temple I K, Gardner R J, Mackay D J et al. Transient neonatal diabetes: Widening the understanding of the etiopathogenesis of diabetes.  Diabetes. 2000;  49 1359-1366
  • 31 Temple I K, Shield J PH. Transient neonatal diabetes, a disorder of imprinting.  J Med Genet. 2002;  39 872-875
  • 32 Arthur E I, Zlotogora J, Lerer I et al. Transient neonatal diabetes mellitus in a child with invdup(6)(q22q23) of paternal origin.  Europ J Hum Genet. 1997;  5 417-419
  • 33 Diatloff-Zito C, Nicole A, Marcelin G et al. Genetic and epigenetic defects as the 6q24 imprinted locus in a cohort of 13 patients with transient neonatal diabetes: new hypothesis raised by the finding of a unique case with hemizygotic deletion in the critical region.  J Med Genet. 2007;  44 31-37
  • 34 Arima T, Drewell R A, Arney K L et al. A conserved imprinting control region at the HYMAI / ZAC domain is implicated in transient neonatal diabetes mellitus.  Hum Molec Genet. 2001;  10 1475-1483
  • 35 Mackay D JG, Temple I K, Shield J PH et al. Bisulphite sequencing of the transient neonatal diabetes mellitus DMR facilitates a novel diagnostic test but reveals no methylation anomalies in patients of unknown aetiology.  Hum Genet. 2005;  116 255-261
  • 36 Murphy R, Ellard S, Hattersley A T. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes.  Nat Clin Pract Endocrinol Metab. 2008;  4 200-213
  • 37 Ellard S, Bellanné-Chantelot C, Hattersley A T. European Molecular Genetics Quality Network (EMQN) MODY Group . Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young.  Diabetologia. 2008;  51 546-553
  • 38 Slingerland A S. Monogenic Diabetes in children and young adults: Chalenges for researcher, clinician and patient.  Rev Endcr Metab Diasord. 2006;  7 171-185
  • 39 Feigerlová E, Pruhová S, Dittertová L et al. Aetiological heterogeneity of asymptomatic hyperglycaemia in children and adolescents.  Eur J Pediatr. 2006;  165 446-452
  • 40 Gloyn A L. Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy.  Hum Mutat. 2003;  22 353-362
  • 41 Stride A, Vaxillaire M, Tuomi T et al. The genetic abnormality in the beta cell determines the response to an oral glucose load.  Diabetologia. 2002;  45 427-435
  • 42 Ellard S, Beards F, Allen L I et al. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria.  Diabetologia. 2000;  43 250-253
  • 43 Stride A, Ellard S, Clark P et al. Beta-cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1alpha mutation carriers.  Diabetes Care. 2005;  28 1751-1756
  • 44 Frajans S S, Bell G I. Macrosomia and neonatal hypoglycaemia in RW pedigree subjects with a mutation (Q268X) in the gene encoding hepatocyte nuclear factor 4alpha (HNF4A).  Diabetologia. 2007;  50 2600-2601
  • 45 Pearson E R, Boj S F, Steele A M et al. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene.  PLoS Med. 2007;  4 148
  • 46 Raile K, Klopocki E, Wessel T et al. HNF1B abnormality (mature-onset diabetes of the young 5) in children and adolescents: high prevalence in autoantibody-negative type 1 diabetes with kidney defects.  Diabetes Care. 2008;  31 83
  • 47 Edghill E L, Oram R A, Owens M et al. Hepatocyte nuclear factor-1beta gene deletions – a common cause of renal disease.  Nephrol Dial Transplant. 2008;  23 627-635
  • 48 Murphy R, Turnbull D M, Walker M et al. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A > G mitochondrial point mutation.  Diabet Med. 2008;  25 383-399
  • 49 Barrett T G. Mitochondrial diabetes, DIDMOAD and other inherited diabetes syndromes.  Best Pract Res Clin Endocrinol Metab. 2001;  15 325-343
  • 50 Ganie M A, Bhat D. Current developments in Wolfram syndrome.  J Pediatr Endocrinol Metab. 2009;  22 3-10
  • 51 Olsen B S, Hahnemann J M, Schwartz M et al. Thiamine-responsive megaloblastic anaemia: a cause of syndromic diabetes in childhood.  Pediatr Diabetes. 2007;  8 239-241
  • 52 Sahoo T, del Gaudio D, German J R et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C / D box small nucleolar RNA cluster.  Nat Genet. 2008;  40 719-721
  • 53 García-Herrero C M, Galán M, Vincent O et al. Functional analysis of human glucokinase gene mutations causing MODY 2: exploring the regulatory mechanisms of glucokinase activity.  Diabetologia. 2007;  50 325-333
  • 54 Iynedjian P B. Molecular physiology of mammalian glucokinase.  Cell Mol Life Sci. 2009;  66 27-42
  • 55 Harries L W, Ellard S, Stride A The European MODY Consortium et al. Isomers of the TCF1 gene encoding hepatocyte nuclear factor-1α show differential expression in the pancreas and define the relationship between mutation position and clinical phenotype in monogenic diabetes.  Hum Mol Genet. 2006;  15 2216-2224

Dr. rer. nat. B. Knebel

Deutsches Diabetes Zentrum DDZ

Auf’m Hennekamp 65

40225 Düsseldorf

Phone: 02 21 / 33 82-5 36

Email: bknebel@ddz.uni-duesseldorf.de

    >