Semin Thromb Hemost 2010; 36(3): 276-285
DOI: 10.1055/s-0030-1253450
© Thieme Medical Publishers

Proximate and Evolutionary Causation of Endothelial Heterogeneity

William C. Aird1 , 2
  • 1Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
  • 2Harvard Medical School, Boston, Massachusetts
Further Information

Publication History

Publication Date:
20 May 2010 (online)

ABSTRACT

Endothelial phenotypes display remarkable heterogeneity in structure and function, in time and space, and in health and disease. As a biological trait, phenotypic heterogeneity has evolutionary and proximate explanations. Here we introduce concepts of evolutionary biology, evolutionary developmental biology, developmental plasticity, and homeostasis toward understanding mechanisms of endothelial heterogeneity. We conclude that endothelial heterogeneity arises from a complex interplay between the genome and the environment, operating at both population and organismal levels across a broad spectrum of time. Mismatch between the genome and/or epigenome and the environment is an important determinant of human vascular disease.

REFERENCES

  • 1 Aird W C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms.  Circ Res. 2007;  100(2) 158-173
  • 2 Aird W C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds.  Circ Res. 2007;  100(2) 174-190
  • 3 McIntosh D P, Tan X Y, Oh P, Schnitzer J E. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery.  Proc Natl Acad Sci U S A. 2002;  99(4) 1996-2001
  • 4 Arap W, Kolonin M G, Trepel M et al.. Steps toward mapping the human vasculature by phage display.  Nat Med. 2002;  8(2) 121-127
  • 5 Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries.  Nature. 1996;  380(6572) 364-366
  • 6 Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model.  Science. 1998;  279(5349) 377-380
  • 7 Arap W, Haedicke W, Bernasconi M et al.. Targeting the prostate for destruction through a vascular address.  Proc Natl Acad Sci U S A. 2002;  99(3) 1527-1531
  • 8 Nesse R M, Bergstrom C T, Ellison P T et al.. Evolution in health and medicine Sackler colloquium: making evolutionary biology a basic science for medicine.  Proc Natl Acad Sci U S A. 2010;  107(suppl 1) 1800-1807
  • 9 Tinbergen N. On aims and methods in ethology.  Z Tierpsychol. 1963;  20 410-433
  • 10 Yano K, Gale D, Massberg S et al.. Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium.  Blood. 2007;  109(2) 613-615
  • 11 Feng J, Yano K, Monahan-Earley R et al.. Vascular bed-specific endothelium-dependent vasomomotor relaxation in the hagfish, Myxine glutinosa .  Am J Physiol Regul Integr Comp Physiol. 2007;  293(2) R894-R900
  • 12 Aird W C. Evolution of cardiovascular systems and their endithelial lining S. In: Burggren WW, Reiber CL Endothelial Biomedicine. Cambridge, NY; Cambridge University Press 2007: 29-49
  • 13 Hajra L, Evans A I, Chen M, Hyduk S J, Collins T, Cybulsky M I. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation.  Proc Natl Acad Sci U S A. 2000;  97(16) 9052-9057
  • 14 Gerhart J, Kirschner M. The theory of facilitated variation.  Proc Natl Acad Sci U S A. 2007;  104(suppl 1) 8582-8589
  • 15 Nesse R M, Stearns S C, Omenn G S. Medicine needs evolution.  Science. 2006;  311(5764) 1071
  • 16 Nesse R M, Williams G C. Why We Get Sick: The New Science of Darwinian Medicine. New York, NY; Times Books 1994
  • 17 Nesse R M, Williams G C. Evolution and the origins of disease.  Sci Am. 1998;  279(5) 86-93
  • 18 Keightley A M, Lam Y M, Brady J N, Cameron C L, Lillicrap D. Variation at the von Willebrand factor (vWF) gene locus is associated with plasma vWF:Ag levels: identification of three novel single nucleotide polymorphisms in the vWF gene promoter.  Blood. 1999;  93(12) 4277-4283
  • 19 Harvey P J, Keightley A M, Lam Y M, Cameron C, Lillicrap D. A single nucleotide polymorphism at nucleotide -1793 in the von Willebrand factor (VWF) regulatory region is associated with plasma VWF:Ag levels.  Br J Haematol. 2000;  109(2) 349-353
  • 20 Menendez D, Krysiak O, Inga A, Krysiak B, Resnick M A, Schönfelder G A. A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network.  Proc Natl Acad Sci U S A. 2006;  103(5) 1406-1411
  • 21 Howard T D, Giles W H, Xu J et al.. Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women.  Stroke. 2005;  36(9) 1848-1851
  • 22 Chi J T, Chang H Y, Haraldsen G et al.. Endothelial cell diversity revealed by global expression profiling.  Proc Natl Acad Sci U S A. 2003;  100(19) 10623-10628
  • 23 Matouk C C, Marsden P A. Epigenetic regulation of vascular endothelial gene expression.  Circ Res. 2008;  102(8) 873-887
  • 24 Hellebrekers D M, Jair K W, Viré E et al.. Angiostatic activity of DNA methyltransferase inhibitors.  Mol Cancer Ther. 2006;  5(2) 467-475
  • 25 Urbich C, Rössig L, Kaluza D et al.. HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells.  Blood. 2009;  113(22) 5669-5679
  • 26 Mottet D, Bellahcène A, Pirotte S et al.. Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis.  Circ Res. 2007;  101(12) 1237-1246
  • 27 Ha C H, Jhun B S, Kao H Y, Jin Z G. VEGF stimulates HDAC7 phosphorylation and cytoplasmic accumulation modulating matrix metalloproteinase expression and angiogenesis.  Arterioscler Thromb Vasc Biol. 2008;  28(10) 1782-1788
  • 28 Wang S, Li X, Parra M, Verdin E, Bassel-Duby R, Olson E N. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7.  Proc Natl Acad Sci U S A. 2008;  105(22) 7738-7743
  • 29 Ha C H, Wang W, Jhun B S et al.. Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis.  J Biol Chem. 2008;  283(21) 14590-14599
  • 30 Chen W, Bacanamwo M, Harrison D G. Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription.  J Biol Chem. 2008;  283(24) 16293-16298
  • 31 Illi B, Dello Russo C, Colussi C et al.. Nitric oxide modulates chromatin folding in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling.  Circ Res. 2008;  102(1) 51-58
  • 32 Hu C J, Chen S D, Yang D I et al.. Promoter region methylation and reduced expression of thrombospondin-1 after oxygen-glucose deprivation in murine cerebral endothelial cells.  J Cereb Blood Flow Metab. 2006;  26(12) 1519-1526
  • 33 Fish J E, Yan M S, Matouk C C et al.. Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones.  J Biol Chem. 2010;  285(2) 810-826
  • 34 Dje N'Guessan P, Riediger F, Vardarova K et al.. Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cells.  Arterioscler Thromb Vasc Biol. 2009;  29(3) 380-386
  • 35 Heusschen R, van Gink M, Griffioen A W, Thijssen V L. MicroRNAs in the tumor endothelium: novel controls on the angioregulatory switchboard.  Biochim Biophys Acta. 2010;  1805(1) 87-96
  • 36 Poliseno L, Tuccoli A, Mariani L et al.. MicroRNAs modulate the angiogenic properties of HUVECs.  Blood. 2006;  108(9) 3068-3071
  • 37 Kuehbacher A, Urbich C, Zeiher A M, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis.  Circ Res. 2007;  101(1) 59-68
  • 38 Suárez Y, Fernández-Hernando C, Pober J S, Sessa W C. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells.  Circ Res. 2007;  100(8) 1164-1173
  • 39 Bonauer A, Carmona G, Iwasaki M et al.. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice.  Science. 2009;  324(5935) 1710-1713
  • 40 Zhou L, Seo K H, He H Z et al.. Tie2cre-induced inactivation of the miRNA-processing enzyme Dicer disrupts invariant NKT cell development.  Proc Natl Acad Sci U S A. 2009;  106(25) 10266-10271
  • 41 Suárez Y, Wang C, Manes T D, Pober J S. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation.  J Immunol. 2010;  184(1) 21-25
  • 42 Khalil A M, Guttman M, Huarte M et al.. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression.  Proc Natl Acad Sci U S A. 2009;  106(28) 11667-11672
  • 43 Guttman M, Amit I, Garber M et al.. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.  Nature. 2009;  458(7235) 223-227
  • 44 Rinn J L, Kertesz M, Wang J K et al.. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs.  Cell. 2007;  129(7) 1311-1323
  • 45 Erwin J A, Lee J T. New twists in X-chromosome inactivation.  Curr Opin Cell Biol. 2008;  20(3) 349-355
  • 46 El-Osta A, Brasacchio D, Yao D et al.. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia.  J Exp Med. 2008;  205(10) 2409-2417
  • 47 Chang P Y, Lu S C, Lee C M et al.. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation.  Circ Res. 2008;  102(8) 933-941
  • 48 Jamaluddin M D, Chen I, Yang F et al.. Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin A gene.  Blood. 2007;  110(10) 3648-3655
  • 49 Hellebrekers D M, Melotte V, Viré E et al.. Identification of epigenetically silenced genes in tumor endothelial cells.  Cancer Res. 2007;  67(9) 4138-4148
  • 50 Post W S, Goldschmidt-Clermont P J, Wilhide C C et al.. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system.  Cardiovasc Res. 1999;  43(4) 985-991
  • 51 Kim J, Kim J Y, Song K S et al.. Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence.  Biochim Biophys Acta. 2007;  1772(1) 72-80
  • 52 Bateson P, Barker D, Clutton-Brock T et al.. Developmental plasticity and human health.  Nature. 2004;  430(6998) 419-421
  • 53 Bateson P. Developmental plasticity and evolutionary biology.  J Nutr. 2007;  137(4) 1060-1062
  • 54 Jones A P, Friedman M I. Obesity and adipocyte abnormalities in offspring of rats undernourished during pregnancy.  Science. 1982;  215(4539) 1518-1519
  • 55 Painter R C, Roseboom T J, Bleker O P. Prenatal exposure to the Dutch famine and disease in later life: an overview.  Reprod Toxicol. 2005;  20(3) 345-352
  • 56 Painter R C, Osmond C, Gluckman P, Hanson M, Phillips D I, Roseboom T J. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life.  BJOG. 2008;  115(10) 1243-1249
  • 57 Heijmans B T, Tobi E W, Stein A D et al.. Persistent epigenetic differences associated with prenatal exposure to famine in humans.  Proc Natl Acad Sci U S A. 2008;  105(44) 17046-17049
  • 58 Morris T J, Vickers M, Gluckman P, Gilmour S, Affara N. Transcriptional profiling of rats subjected to gestational undernourishment: implications for the developmental variations in metabolic traits.  PLoS One. 2009;  4(9) e7271
  • 59 Gluckman P D, Hanson M A, Buklijas T, Low F M, Beedle A S. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases.  Nat Rev Endocrinol. 2009;  5(7) 401-408
  • 60 Drake A J, Walker B R, Seckl J R. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats.  Am J Physiol Regul Integr Comp Physiol. 2005;  288(1) R34-R38
  • 61 Benyshek D C, Johnston C S, Martin J F. Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life.  Diabetologia. 2006;  49(5) 1117-1119
  • 62 Rodford J L, Torrens C, Siow R C, Mann G E, Hanson M A, Clough G F. Endothelial dysfunction and reduced antioxidant protection in an animal model of the developmental origins of cardiovascular disease.  J Physiol. 2008;  586(Pt 19) 4709-4720
  • 63 Williams S J, Hemmings D G, Mitchell J M, McMillen I C, Davidge S T. Effects of maternal hypoxia or nutrient restriction during pregnancy on endothelial function in adult male rat offspring.  J Physiol. 2005;  565(Pt 1) 125-135
  • 64 Wang Z, Huang Z, Lu G, Lin L, Ferrari M. Hypoxia during pregnancy in rats leads to early morphological changes of atherosclerosis in adult offspring.  Am J Physiol Heart Circ Physiol. 2009;  296(5) H1321-H1328
  • 65 Liu J, Gao Y, Negash S, Longo L D, Raj J U. Long-term effects of prenatal hypoxia on endothelium-dependent relaxation responses in pulmonary arteries of adult sheep.  Am J Physiol Lung Cell Mol Physiol. 2009;  296(3) L547-L554
  • 66 Gluckman P D, Hanson M A. Developmental Origins of Health and Disease. Cambridge, NY; Cambridge University Press 2006
  • 67 Hida K, Hida Y, Amin D N et al.. Tumor-associated endothelial cells with cytogenetic abnormalities.  Cancer Res. 2004;  64(22) 8249-8255
  • 68 Boye E, Yu Y, Paranya G, Mulliken J B, Olsen B R, Bischoff J. Clonality and altered behavior of endothelial cells from hemangiomas.  J Clin Invest. 2001;  107(6) 745-752
  • 69 Barnés C M, Huang S, Kaipainen A et al.. Evidence by molecular profiling for a placental origin of infantile hemangioma.  Proc Natl Acad Sci U S A. 2005;  102(52) 19097-19102
  • 70 Wang H W, Trotter M W, Lagos D et al.. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma.  Nat Genet. 2004;  36(7) 687-693

William C AirdM.D. 

Director, Center for Vascular Biology Research. Chief, Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center

Professor of Medicine, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215

Email: waird@bidmc.harvard.edu

    >